Charged-current interactions on nuclei for low energy geoneutrino detection

Sam Hedges

1/4/2025

Outline

- 1. Motivation
- 2. Review of existing literature
- 3. ⁶³Cu as a target
- 4. Measuring the *ft*-value of ⁶³Ni^m
- 5. Summary

Motivation

- ⁴⁰K geoneutrinos unable to be detected with IBD on hydrogen
 - 1.8 MeV threshold for IBD on hydrogen, ⁴⁰K neutrino endpoint ~1.31 MeV
 - For an overview on the missing potassium problem, see talk: https://indico.cern.ch/event/825708 /contributions/3550280/attachment s/1931708/3199582/Serafini_NGS1 9.pdf
- Charged-current scattering on other nuclei can have lower thresholds

Two main processes

1. Inverse beta decay (IBD):

$$\overline{\nu}_e + {}^A_Z X \rightarrow e^+ + {}^A_{Z-1} Y^{(*)}$$

- Minimum threshold for stable nuclei is 1.022 MeV
- Pointed out that long-lived metastable states can have lower thresholds (see https://indico.phy.ornl.gov/event/433/contributions/1908/), but very small natural abundances
 - ¹⁸⁰Ta^m→¹⁸⁰Hf has threshold of 0.2534 MeV, but cross section expected to be small due to spin-parity of transition
 - ¹⁸⁰Ta^m is "nature's rarest isotope" -<u>https://www.sciencedirect.com/science/article/pii/S0375947403009539</u>
- Cross section lower for heavy targets due to Pauli blocking
- Cross section inversely proportional to the *ft*-value of the corresponding beta decay

Two main processes

- 2. Resonant Orbital Electron Capture (ROEC) $\overline{\nu}_e + {}^A_Z X + e^- \rightarrow {}^A_{Z-1} Y^{(*)}$
 - Thresholds depend on the energy to capture an electron, can be significantly lower
 - Cross section increases with heavier nuclei (more electrons)
 - Only depends on neutrino flux within a small window around the required capture energies
 - Only signature is the end nucleus, but can potentially capture to excited states as well
 - Not yet measured

- Krauss, Glashow, Schramm, Nature 310 (1984)
 - Focus on radiochemical approach
 - Consider IBD as well and ROEC

Takeaways

- ³He the most promising target, but too costly to produce a large-scale detector
- ³⁵Cl mentioned as another interesting target
- Transitions to metastable states (e.g. ⁷⁹Br) can have larger cross sections, but does not work well for radiochemical approach
 - Make some assumptions about log(ft) values of these...

	O _R (MeV)		$= 1 \text{ day and } Q_{ns} < 2 \text{ MeV} (in order of increasing log ft)Interaction$			
	(ground state		Product	rate	Sensitivity to	
Target process	transition)	log ft	lifetime	(TAU)	terrestrial decay	
${}_{2}^{3}\text{He} \rightarrow {}_{1}^{3}\text{H}$	0.0186	3.1	12 yr	0.32	²³⁸ U, ⁴⁰ K, ²³² Th	
$^{33}_{16}S \rightarrow ^{33}_{15}P$	0.248	5.0	25 day	0.002	232Th, 238U, 87Rb	
$^{35}_{17}Cl \rightarrow ^{35}_{16}S$	0.167	5.0	88 day	0.004	²³² Th, ²³⁸ U, ⁸⁷ Rb	
$^{121}_{51}Sb \rightarrow ^{121}_{50}Sn$	0.383	5.0	27 h	0.01	⁴⁰ K, ²³⁸ U	
${}^{64}_{30}Zn \rightarrow {}^{64}_{29}Cu \rightarrow {}^{64}_{28}N_i$	0.573	5.3	Stable	0.02	40K, 238U, 232Th	
$^{77}_{14}Se \rightarrow ^{77}_{13}As$	0.68	5.7	1.6 day			
$^{175}_{71}Lu \rightarrow ^{175}_{70}Vb$	0.467	6.3	5.5 day	$\sim 10^{-2}$		
¹⁶⁹ ₆₉ Tm → ¹⁶⁹ Er	0.34	6.4	9.4 day			
$^{185}_{75}\text{Re} \rightarrow ^{185}_{74}\text{W}$	0.49	6.5	75 day			
$^{177}_{72}Hf \rightarrow ^{177}_{71}Lu$	0.497	6.6	6.7 day			
$^{63}_{29}Cu \rightarrow ^{63}_{28}Ni$	0.067	6.7	92 yr	0.04* (0.15-0.2 MeV)	⁸⁷ Rb, ²³² Th	
¹⁵³ ₆₃ Eu → ¹⁵³ ₆₂ Sm	0.801	7.2	2 day			
$^{199}_{80}\text{Hg} \rightarrow ^{199}_{79}\text{Au}$	0.46	7.5	3.15 day			
$^{151}_{63}Eu \rightarrow ^{151}_{62}Sm$	0.076	7.6	87 yr	0.15 (0.15-0.23 MeV)	⁸⁷ Rb, ²³² Th	
$^{141}_{59} Pr \rightarrow ^{141}_{58} Ce$	0.58	7.7	33 day			
¹⁶¹ ₆₆ Dy → ¹⁶¹ ₆₅ Tb	0.58	7.8	7 day			
¹⁵⁵ ₆₄ Gd → ¹⁵⁵ ₆₃ Eu	0.248	8.2	1.8 yr			
$^{14}_{7}N \rightarrow ^{14}_{6}C$	0.156	9.0	5×10^3 yr			
$^{85}_{37}\text{Rb} \rightarrow ^{85}_{36}\text{Kr}$	0.67	9.1	10.7 yr			
$^{113}_{49}$ ln $\rightarrow ^{113}_{48}$ Cd	0.58	9.2	14 yr			
$^{39}_{19}K \rightarrow ^{39}_{18}Ar$	0.565	9.9	269 yr			
$^{204}_{87}Pb \rightarrow ^{204}_{81}TI$	0.765	9.9	3.8 yr			
$^{79}_{35}Br \rightarrow ^{79}_{34}Se$	0.154	10.8	6.5×10 ⁴ yr	0.08 (0.25 MeV)	⁸⁷ Rb, ²³² Th	
$^{107}_{47}Ag \rightarrow ^{107}_{46}Pd$	0.035	10.8	$7 \times 10^6 \text{ vr}$		and a second sec	

Estimate excited state transition interaction assuming $\log ft = 5.0$ for allowed transition. Excited state $Q_{\rm B}$ given in parentheses.

N. Klay and F. Käppeler, Phys. Rev. C **38**, (1988) – ⁷⁹Se^m log(*ft*) = 4.7

- Krauss, Glashow, Schramm, Nature 310 (1984)
 - Focus on radiochemical approach
 - Consider IBD as well and ROEC

Takeaways

- ³He the most promising target, but too costly to produce a large-scale detector
- ³⁵Cl mentioned as another interesting target
- Transitions to metastable states (e.g. ⁷⁹Br) can have larger cross sections, but does not work well for radiochemical approach
 - Make some assumptions about log(ft) values of these...
- ROEC can have large cross sections for heavy nuclei for specific energy neutrinos

		Table 2 Two	model detectors		
		³ ₂ He→ ³ ₁ H	H ₁ lifetime = 12.3 yr log ft = 3.1 $Q_{\rm B}$ = 0.01861 MeV states	²⁰⁹ Bi→ ²⁰⁹ Pb	Pb lifetime = 3.3 H log $ft = 5.5$ $Q_{\rm B} = 0.64$ ates
Terrestrial process	E _v max	Resonant (TAU)	Inverse (TAU)	Resonant (TAU)	Inverse (TAU)
⁴⁰ K ⁸⁷ Rb ²³⁸ 1	1.31 0.274	1.8×10^{-9} 3.1×10^{-7}	0.11 0	8.5×10^{-2} 0	0 0
²³⁴ Th ²³⁴ Pa	0.191	5.2×10^{-9} 2.3 × 10 ⁻⁹	0	0 10 ⁻⁴	$0 \\ 1.2 \times 10^{-5}$
²¹⁴ Pb ²¹⁴ Bi	1.03	1.4×10^{-9} 4×10^{-11}	0 5 3 × 10 ⁻²	8.5×10^{-2} 2.8 × 10^{-3}	0×10^{-6}
²¹⁸ Pb ²¹⁰ B;	0.061	9×10^{-8} 1.2 × 10^{-9}	0 14×10 ⁻²	0 1 1 × 10 ⁻²	0
²³² Th ²²⁸ Ra	0.055	2.5×10^{-5}	0	0	0
²⁷⁸ Ac ²¹² Pb	2.18	2.5 ~ 10	1.4×10^{-2}	6×10^{-3}	10 ⁻⁷
²¹² Bi 208 T 1	2.25	$0(10^{-9}-10^{-11})$	3.1×10^{-2} 2.8 × 10^{-2}	10^{-5} 10^{-4}	6×10^{-6} 2 × 10^{-6}
Total from lithosphere	1.60	2.5×10^{-5}	0.36	0.2	2.6×10^{-5}

 $1 \text{ TAU} = 10^{-36}$ interactions per target atom s⁻¹ (and is equivalent to 1 sNU).

- Kobayashi and Fukao, Geophysical Research Lett. 18 (1991)
 - Consider IBD and ROEC

Takeaways

- Two detectors considered:
 - Direct detection—with 10tonnes of ³He, one event detected in ~3 days
 - Indirect detection—detect product element in rocks by isotopic analysis
- Don't consider transitions to metastable states

able	2.	Candidates	of	target for	terrestrial	antineutrino	detectic
				U·			

Target	Eth [MeV]	Reaction Rate [TAU*]	Saturated P/T ratio	N_T^{**} [kg]
¹⁸⁷ Os	1.025	6.3×10^{-8}	1.3×10^{-25}	5.6×10^{13}
^з Не	1.041	2.1	1.2×10^{-27}	27000
¹⁰⁷ Ag	1.055	3.3×10^{-7}	9.7 × 10 ^{−29}	6.3×10^{12}
¹³¹ Eu	1.098	1.2×10^{-3}	4.6 × 10 ⁻³⁰	2.5×10^{9}
⁹³ Nb	1.114	7.3×10^{-8}	5.0×10^{-30}	2.5×10^{13}
¹⁷¹ ҮЪ	1.119	9.1×10^{-3}	8.2×10^{-31}	3.6×10^{8}
14N	1.179	7.5×10^{-7}	2.0×10^{-31}	3.6×10^{11}
⁷⁹ Br	1.181	1.9×10^{-7}	5.7×10^{-31}	7.8×10^{12}
³⁵ Cl	1.190	3.7×10^{-5}	4.0×10^{-34}	1.8×10^{10}
¹³⁵ Ba	1.227	1.6×10^{-9}	2.1×10^{-31}	1.7×10^{15}
¹⁵⁵ Gd	1.268	1.5×10^{-4}	3.3×10^{-32}	2.0×10^{10}
³³ S	1.271	1.2×10^{-2}	3.8×10^{-32}	5.3×10^{7}
¹⁶⁹ Tm	1.374	3.2×10^{-3}	3.7×10^{-33}	1.0×10^{9}
¹²¹ Sb	1.409	6.7×10^{-2}	9.4×10^{-33}	3.5×10^{7}
¹⁸⁵ Re	1.454	7.1×10^{-3}	6.6×10^{-32}	5.0×10^{8}
¹⁹⁹ Hg	1.475	9.1×10^{-4}	3.6×10^{-34}	4.2×10^{9}
¹⁷⁵ Lu	1.490	1.8×10^{-2}	9.2×10^{-33}	1.9×10^{8}
¹⁷⁷ Hf	1.519	9.2×10^{-3}	7.7×10^{-33}	3.7×10^{8}
⁶⁴ Zn	1.600	7.6 × 10 ^{−3}	1.3×10^{-33}	1.6×10^{8}
¹⁴¹ Pr	1.602	3.3×10^{-4}	1.3×10^{-33}	8.2×10^{9}
¹¹³ In	1.608	9.2×10^{-6}	5.9×10^{-33}	2.4×10^{11}
¹⁶¹ Dy	1.613	1.9×10^{-4}	1.7×10^{-34}	1.6×10^{10}
⁷⁷ Se	1.712	4.0×10^{-3}	8.1×10^{-34}	3.7×10^{8}
¹⁵³ Eu	1.827	5.8×10^{-4}	1.4×10^{-34}	5.1×10^{9}

Η	1.804	4.2×10^{-3}	3.8×10^{-36}	4.6×10^{6}
²⁷ Al	3.631	4.4×10^{-7}	3.6×10^{-40}	1.2×10^{12}
⁴³ Ca	2.839	6.3×10^{-6}	7.3×10^{-37}	1.3×10^{11}
³¹ P	2.513	4.0×10^{-4}	5.5×10^{-36}	1.5×10^{9}
³⁹ K	1.587	4.5×10^{-7}	5.5×10^{-33}	1.7×10^{12}
⁴7Ti	1.623	1.1×10^{-2}	4.7×10^{-33}	8.2×10^7
⁶³ Cu	1.087	8.1×10^{-4}	3.7×10^{-30}	1.5×10^{9}
⁹⁵ Mo	1.948	1.0×10^{-4}	4.5×10^{-34}	1.8×10^{10}
²⁰⁴ РЪ	1.785	5.9×10^{-6}	1.1×10^{-33}	6.6×10^{11}
²⁰⁶ РЪ	2.548	5.8 x 10 ⁻³	2.1×10^{-36}	6.8×10^{8}
²⁰⁷ РЪ	2.444	1.1×10^{-2}	4.4×10^{-36}	3.8×10^8
Element	s of which	products are n	oble gases	
⁸⁵ Rb	1.709	4.7×10^{-6}	2.3×10^{-33}	3.5×10^{11}
¹³³ Cs	1.499	6.2×10^{-3}	4.1×10^{-33}	4.1×10^{8}

** Necessary amount for one reaction per one day

- A. Cabrera, et al. (LiquidO collaboration), arXiv:2308.04154 (2023)
 - Focus on IBD
 - Real-time detection—can use event topology and de-excitation coincidences to tag interactions with opaque scintillator

Target process	IA [<i>%</i>]	E _{th} [MeV]	Log(ft)	Ref	S(U) [TNU]	S(Th) [TNU]	S(K) [TNU]
${}^{1}H \rightarrow {}^{1}n$	99.99	1.806	3.0170	[26]	31.5 [24.0 ; 47.0]	9.0 [6.4; 14.1]	1
⁶³ Cu → ⁶³ Ni		1.089	6.7	[25]	085 [064+126]	0.40[0.15:0.77]	0.10 [0.07: 0.13]
⁶³ Cu → ⁶³ Ni*	09.15	1.176	5	[22]	0.05 [0.04, 1.20]	0.49 [0.53 , 0.77]	0.10 [0.0/ , 0.13]
$^{35}Cl \rightarrow {}^{35}S$	75.76	1.189	5.0088	[27]	0.73 [0.56 ; 1.09]	0.43 [0.30; 0.67]	0.10 [0.07; 0.13]
$^{106}Cd \rightarrow ^{106}Ag$	1.25	1.212	4.1	[28]	(1.7 [1.3 ; 2.6]) · 10 ⁻¹	$(9.7 [6.9; 15.2]) \cdot 10^{-2}$	(5.1 [3.7 ; 6.6]) · 10 ⁻³

Takeaways

- Identify ⁶³Cu, ³⁵Cl as most promising candidates, strong emphasis on ⁶³Cu
 - Assume log(ft) value of 5 for all metastable states, as done in Krauss, Glashow, & Schramm
 - Log(ft) of ⁷⁹Br measured to be 4.7 in Klay & Kappeler, Phys. Rev. C **38** (1988)

Target process	IA [<i>%</i>]	E _{th} [MeV]	Log(<i>ft</i>)
${}^{1}H \rightarrow {}^{1}n$	99.99	1.806	3.0170
⁶³ Cu→ ⁶³ Ni	60.15	1.089	6.7
$^{63}Cu \rightarrow ^{63}Ni^*$	69.15	1.176	5
$^{35}\text{Cl} \rightarrow ^{35}\text{S}$	75.76	1.189	5.0088
$^{106}Cd \rightarrow ^{106}Ag$	1.25	1.212	4.1
⁷⁹ Br → ⁷⁹ Se	(-	1.173	10.77
$^{79}\mathrm{Br} \rightarrow ^{79}\mathrm{Se}^*$	50.69	1.268	5
${}^{\scriptscriptstyle 171}Yb \to {}^{\scriptscriptstyle 171}Tm$	14.09	1.119	6.318
${}^{^{151}}Eu \rightarrow {}^{^{151}}Sm$	17 91	1.099	7.51
${}^{\scriptscriptstyle 151}Eu \to {}^{\scriptscriptstyle 151}Sm^*$	47.81	1.266	5
${}^{45}\text{Sc} \to {}^{45}\text{Ca}$	100	1.282	6
$^{3}\text{He} \rightarrow ^{3}\text{H}$	1.34 · 10 ⁻⁴	1.041	3.0524
$^{33}S \rightarrow ^{33}P$	0.75	1.271	5.022
$^{14}N \rightarrow {}^{14}C$	99.64	1.178	9.040
$^{107}\text{Ag} \rightarrow ^{107}\text{Pd}$	51.839	1.056	9.9
$^{147}Sm \rightarrow ^{147}Pm$	14.99	1.246	7.4
$^{187}\text{Os} \rightarrow ^{187}\text{Re}$	1.96	1.024	11.195
$^{93}Nb \rightarrow ^{93}Zr$	100	1.113	12.1
${}^{155}Gd \rightarrow {}^{155}Eu$	14.80	1.274	8.62
$^{135}\text{Ba} \rightarrow ^{135}\text{Cs}$	6.592	1.291	13.48
${}^{87}\mathrm{Sr} ightarrow {}^{87}\mathrm{Rb}$	7.00	9 1.304	17.514

Why ⁶³Cu?

$$\overline{\nu}_e + {}^{63}\text{Cu} \rightarrow e^+ + {}^{63}\text{Ni}^{(m)}$$

- Low threshold: 1.089 MeV to ground state in resulting ⁶³Ni
- Large natural abundance: 69.2% natural abundance
- Coincidence tagging: first excited state in ⁶³Ni has lifetime of 1.67µs, emits 87-keV gamma
- Both transitions to ground state and first excited state are allowed transitions

ft-values

- Charged-current cross section inversely proportional to the *ft*-value of corresponding beta decay
- *ft*-value of the first excited state of ⁶³Ni has never been measured
 - Critical first step for advancing detectors relying on this interaction
- For now, using ft-values from Chen and Wang, *Symmetry* (2023)

IBD cross section

(including ⁶³Ni excited states up to ~1 MeV)

Measuring the *ft*-value

- The ft-value is encoded in the branching ratio (R_{β}) of the first excited state of ⁶³Ni—how often it de-excites to ground state vs. direct decays
- Also impact isotopes produced in supernovae
 - ⁶³Ni has a long half-life, in supernovae temperatures can be high enough that many ⁶³Ni nuclei in first excited state
 - If decay from excited state is fast, affects the amount of ⁶³Cu produced
- Can potentially measuring the *ft*-value via neutron capture on ⁶²Ni with a pulsed neutron source
 - Requires *large* flux of neutrons, expected branching ratio is small (~10⁻¹² to 10⁻¹⁴) for log(ft) = 4.7-5.8
 - Beta decay half-life of ⁶³Ni^m corresponding to log(ft)=5 is 255 days
 - To produce 100 beta decays from excited state with this log(*ft*), would be left with μ C-scale ⁶³Ni source

⁶³Ni Production

 Already enriched for ⁶²Ni production (96%) for safeguard applications

← → C
♦ https://www.ornl.gov/news/making-radioactive-63ni-target-explosives
Menu =
♦ OAK RIDGE
National Laboratory

⁶²Ni is not naturally abundant, occurring at only 3.6% in nature. "The ⁶²Ni material we use for the target is <mark>96% enriched,</mark>" Ferren explained. "We increase the percentage of ⁶²Ni, compared to the other isotopes, to get more atoms of ⁶²Niper unit volume to hit with the neutrons." This stable isotope enrichment process was achieved with electromagnetic separators located at the Y-12 site. The irradiation of the highly enriched ⁶²Ni results in a high "specific activity" product, containing fewer impurities at the end of bombardment.

Industry specifications require the specific activity of the final product to be at least 15 curies (a measure of radioactivity) of ⁶³Ni per gram of enriched Ni target material. To achieve this, the ⁶³Ni is placed in the reactor for approximately 15 reactor cycles, where it becomes progressively more radioactive. Each target produces approximately 375 curies of ⁶³Ni

What energy neutrons?

- Peak in capture cross section around 1.3 MeV
- Don't really care how the metastable state is produced—can be produced from higher energy states de-exciting

Neutron capture on ⁶²Ni

- Need a large array of ⁶²Ni-loaded scintillator (plastic or liquid) cells
 - Aim for 5+% loading in ⁶²Ni
 - Measure for ~2 weeks at Triangle Universities Nuclear Laboratory (TUNL)
 - Detector cell should be small—150 keV beta travels 0.2mm in plastic scintillator
- Neutron pulses are <10ns in width, separate pulses in time by 12.8µs (can change this)
 - This pulsing allows essentially all the produced ⁶³Ni^m to de-excite or decay
 - Signature of decay from excited state is a larger energy electron (end point of ~155 keV)
 - Focus on energy region from ~80 keV to 155 keV—above gamma de-excitation line
 - Signal should also occur outside of neutron beam window (between pulses), coincident only with a single cell, and want to maximize exposure while avoiding pile-up

Simulation of 1.25 MeV neutrons incident on ⁶²Ni-loaded LS cell

Calculated ⁶³Ni^m beta spectrum

Longer term objectives

- Assuming the log(ft) value is at least as low as predicted, next obstacle is loading scintillator with ⁶³Cu
 - Some existing formulas in literature, but not sure of properties
- Detector design would then be optimized via simulation—want to take advantage of 1.67µs metastable coincidence rejection
 - Simulate external backgrounds, backgrounds from IBD on hydrogen, ROEC as a signal and/or background
- Look into directionality of emitted positron to reduce backgrounds
 - Typically anticorrelated with the direction of the neutrino for other targets at low energies, but haven't seen calculations specifically for ⁶³Cu

Summary

- Charged-current interactions with nuclei one means to detect low energy electron antineutrinos
 - Little experimental work studying these interactions at this energy scale
- Copper-63 one of the most promising candidates
- Log(ft) of first excited state in Nickel-63 should be measured to better understand the cross section
 - Can potentially make this measurement at TUNL
- After measuring log(*ft*), can better evaluate the sensitivity of this technology and optimize a detector design