Overview of Ocean Bottom Detector project

<u>Hiroko Watanabe</u>, **Research Center for Neutrino Science, Tohoku University**

January 3, 2025

Neutrino Geoscience: Current and Future

first measurement in 2005

Multi-site Measurement + OBD

Observation =
$$Crust$$
 + Mantle
(y = x + b)

Near Future...

4 multi-site measurements can constrain mantle contribution.

Crust estimation needs to be accurate.

+ OBD

OBD can directly measure mantle contribution.

OBD Motivations

Direct Measurement of Mantle

need to be far from crust can be far from reactors

Multi-site Measurements

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

Multidisciplinary Detector

Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u> Mantle/Total

OBD Motivations

Direct Measurement of Mantle

need to be far from crust can be far from reactors

• Multi-site Measurements

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

Multidisciplinary Detector

Šrámek et al (2013) EPS, <u>10.1016/j.epsl.2012.11.001</u>

Mantle Geoneutrino Flux

OBD Motivations

Direct Measurement of Mantle

need to be far from crust can be far from reactors

Multi-site Measurements

Solve the mystery of deep Earth! First detector for mapping the inhomogeneous mantle

Multidisciplinary Detector

Physics, Geoscience, Mantle drilling, Biology, New technology,...

Help Advanced
or Unique
energy scale ad function in oactive decays in geology indirectly to a nuclear be made of rino mass not rely upon An for a major
eutrino Telescopes,
)

~20 kg

Ocean Engineering.

trino Physics

2005 not so many progress... 2019 Ne are 2020-2025

OBD project has started with **JAMSTEC*& Tohoku U.**

* Japan Agency for Marine-Earth Science and Technology

July 9, 2019

2005 not so many progress... 2019 Ne are 2020-2025 ~20 kg

Technical test & world's first measurement in the ocean with LS detector * Install detector into ~1km seafloor (JAMSTEC's Hatsushima Observatory) take data for several months

Another option: seafloor around Hawaii with battery operation

- f measure muon late in the sea \rightarrow input parameter for future large detector
- * Technical developments are in progress.

detector design

Hatsushima Observatory

electrical & optical connections to near coast, monit cameras, etc. 8

OBD Present & Future

~20 kg

2005 not so many progress... 2019 Ne are 2020-2025

Technical demonstration & environment measurement in the sea deep sea neutrino & muon flux, ocean water density & temperature, radioactivity \rightarrow input parameters for ~1.5 kt detector design 2.5 **First clear mantle signal** Detector simulation study is in progress. Counts /0.1MeV/year Total * Hawaii is possible position. U Detector should be installed at ~4km deep sea to Th Low temperature (2-4°C) shield muons high pressure (40MPa) (**a**.n) Backgrounds Signal 0.5 E reagion (a,n) He-Li Fast-neutron Total Reactor Th Acci. **Total** 3.88 9.93 4.13 1.92 0 <2.42 All 8.23 1.64 6.59 (4.61) (1.15) (5.76) 1.53 1.90 2.96 <0.58 6.39 0 Geo-nu (mantle) [Events/year] highQ model: 1year \rightarrow 3.7 σ * Mantle geoneutrino sensitivity middleQ model: $3year \rightarrow 3.5\sigma$ lowQ model: 10year $\rightarrow 2.5\sigma$

2005 not so many progress... 2019 № ^{are 1}2020-2025 eq

More statistics, Model separation 17 kt detector simulation

* Mantle geoneutrino sensitivity

	LowQ	MiddleQ	HighQ
1.5kt	2.5σ	3.5σ	3.7σ
	10 years	3 years	1 year
17kt	3.04σ	3.94σ	4.12σ
	1 year	3 months	1 month

* Using sea water region for high-energy atmospheric neutrino as "neutrino oscillation tomography" to understand LLSVP

1-10 t ~1.5 kt		10-50 kt						
					Matur	ity of	scier	nce
An IDINAN THE GALL DE CONTRACTION OF THE AND	a de la de la companya de la company	Sigi	nal		Backgr	ounds		
	U	Th	total	reactor	accidental	(α,n)	He-Li	tota
全領域	112.45	28.05	140 50	67.84	14.29	55.47	0	137.
ートリノ領域	112.43	20.05 140.5	140.50	23.08	12.61	40.27	0	75.9

* Using sea water region for high-energy atmospheric neutrino as "neutrino oscillation tomography" to understand LLSVP

> Pacific Ocean is an unique location just above LLSVP region. **Special opportunity to understand density of deep mantle?**


```
図 6.3: 大気ニュートリノの天頂角ごとの経路
```


図 6.4: 大気ニュートリノの天頂角ごとのミューニュートリノの生存確率

Cost Estimation

Detector size	running time to identify model	detector cost	ship cost	running cost
検出器サイズ	モデル分別に必要な観測期間	検出器製作費	船の製作費	船の運用費
1.5kt	10 年	48 億円	28 億円	21 億円 ×10 年
17kt	1年	369 億円	78 億円	57 億円 ×1 年
	years	/1.5 [M\$]	/1.5 [M\$]	

years

検出器サイズ	合計費用 (1 地点)	合計費用 (2 地点)	合計費用(3地点)
1.5kt	286 億円 (10 年)	496 億円 (20 年)	706 億円 (30 年)
17kt	504 億円 (1 年)	561 億円 (2 年)	618 億円 (3 年)

1 position **Detector size**

- Smaller size detector costs less, but takes longer time to do science - Detector cost & running cost should be considered

3 positions 2 positions

Community Building Status

2005 not so many progress... 2019 Ne are 2020-2025

Thematic Program 2022

August – December 2022

international symposiums

~20 kg

outreach @Astronomical Observatory

In total ~60 participants from different countries during the program.

Events

- International Symposium, Frontier of Understanding Earth's Interior and Dynamics (August 8 and 9, 2022
 Rublic Lecture, Exploring the Ocean Floor: The Next "Space Mission" (Sentember, December, 2022)
- Lecture for Young Students, the Power Driving the Earth's Engine (October December 20
- □ Workshop, Cutting Edge Technology for Understanding the Earth (Early December, 2022)

Organizers

Hiroko Watanabe (Tohoku University) Kunio Inoue (Tohoku University) William F. McDonough (Tohoku University / University of Marylant Natsue Abe (JAMSTEC) Tamano Omata (JAMSTEC) Yasuhiro Yamada (Kyushu University / Royal Holloway University of London)

Тоноки Forum for Creativity

www.tfc.tohoku.ac.jp

1-10 t

~1.5 kt

10-50 kt

- * discussing idea & plan of research
- * applying for funding

Corporative study with IceCube (Chiba U.) * corporative development of PMT module

* corporative development of PMT module (glass shielded PMT & electronics)

Future Science Promotion Initiative 2023 (Science Council of Japan)

105	深海アルゴフロートの全球展開による気候・生態系変 動予測の高精度化	神田 穰太(日: 長)
1 06	地球ニュートリノ観測が切り拓く新しい地球未来像	渡辺 寛子(東北 トリノ科学研究+
107	衛星全球地球観測による気候・地球システム科学研究 の推進	若林 裕之(日本 シング学会会長)

Developments & Discussion Lists

on-going, to-do's For high pressure, low temperature, isolated place

◆Glass shield

- high purity glass

Liquid scintillator

- light yield, transparency
- under high pressure

+PMT module

- glass shielded PMT & electronics
- non-PMT idea?

Electronics, DAQ

- limited availability of electricity
- design of DAQ system

details will be presented by following talks

Detector simulation

- Prototype detector
 - pressure compatibility check
 - light-transfer simulation
 - physics event simulation
 - muon
 - LS monitoring with calibration source
 - sea water radioactive impurity measurement
- Larger size detector
 - size-depending sensitivity estimation
 - directionality?
 - sea water as Cherenkov detector

Project design

- infrastructure for detector
- cost estimation
- funding strategy (time & sources)

Prototype Detector

flame

Liquid Scintillator tank (V=30L)

stainless box

PMT & electronics

pressurize test facility @Tsurumi Seiki (Yokohama)

pressure compensation tube

shield folder

Prototype Detector

Measurement test at Tohoku U.

assembled (5inch PMT with glass shelled)

with water

1. large size detector (1kt~) <u>geo-neutrino</u>

Testing a proposed "second continent" beneath eastern China using geoneutrino measurements

Left panel shows cartoon illustration of a second continent that formed under Figure 1. eastern China due to Pacific-type subduction occurring along the western margin of the Pacific basin. Picture is an adaptation of Fig. 5. in [Kawai et al., 2013]. The proximity of 3 geoneutrino experiments to this putative second continent are shown as being underground in Japan (KamLAND) and China (JUNO and Jinping). These 3 detectors see approximately the same mantle volume and similar global crust, see right panel, which results in a major reduction in the predicted uncertainties. Local differences in the geoenutrino fluxes for each of these detectors are due to geological differences in the nearby lithosphere (closest 500 km) surrounding the detector; this region contributes approximately half of the detected signal.

Status of Technical Developments

DUMAND, IceCube type **PMT** module is expected

Needs : low background pressure resistant

- low background
- pressure resistant : <40MPa broken

Pressure test @JAMSTEC

can not be used?

structural calculation

Glass (OKAMOTO Glass Co.)

- pressure resistant
- very high impurities

	238 U	²³² Th	⁴⁰ K	
target	1x10 ⁻⁸	1x10 ⁻⁸	1x10 ⁻⁸	
normal glass	~1x10 ⁻⁷	~1x10 ⁻⁷	~1x10 ⁻⁷	
our work	1.4x10 ⁻⁸	<5.0x10 ⁻⁹	3.4x10 ⁻⁹	
reduction	1/10	1/500	1/300	

- * cleaner material selection
- * Pt coating on the melting pot

enhance the size (20 inch)

Liquid scintillator LAB(oil) + PPO(fluorescents)

Low temperature

Status of Technical Developments

Liquid scintillator density under low-temperature & high pressure

Temperature & pressure dependence profiles are available.

