Evaluating Fast Multi-Channel Photosensors and Readout Electronics for Large Neutrino Detectors

Workshop on Geo-Neutrinos

University of Hawaii at Manoa January 2–5, 2025

V.A. Li¹, O.A. Akindele¹, M. Bondin¹, J.A. Foot², M.J. Ford¹, J.J. Qi³

¹ Lawrence Livermore National Laboratory

² University of California, Merced

³ University of California, San Diego

Prepared by LLNL under Contract DE-AC52-07NA27344.

Outline for the discussion LLNL and OBD

• Recent R&D at LLNL (potential connection to OBD)

- Photosensors and Electronics evaluation/design (most of this talk)
- New scintillators (liquid and plastic)
- Simulations/software (post-WATCHMAN, RATPAC 2, Livermore computing)
- Directionality (UH/LLNL studies)
- Engineering (optical modules, detector design)
- Bringing students

UTohoku / UH / LLNL need to coordinate the path forward.

Modern Large Neutrino Detector and advances by our LLNL group

Detection medium:

- Plastic PSD Scintillator (Performance of large-scale 6Li-doped pulse-shape discriminating plastic scintillators NIMA 1069 (2024) 169916)
- Liquid PSD (6Li-loaded liquid scintillators produced by direct dissolution of compounds in diisopropylnaphthalene NIMA 1054 (2023) 168389)
- Water (<u>A long path-length optical property measurement device for highly transparent detector media</u> JINST 18 (2023) 09, P09004, <u>Exclusion and Verification of Remote Nuclear</u> <u>Reactors with a 1-kiloton Gd-Doped Water Detector</u> Phys. Rev. Applied 19 (2023) 3, 034060)
- WbLS (Pulse-shape discrimination in water-based scintillators NIMA 1036 (2022))
- Photosensor:
 - **PMT** (Improvement in light collection of a photomultiplier tube using a wavelength-shifting plate NIMA 1040 (2022) 167207)
 - MA MCP-PMT (Studies of MCP-PMTs in the miniTimeCube neutrino detector, AIP Adv. 8 (2018) 9, 095003)
 - MA MCP-PMT (LAPPD) (this talk)
 - SiPM (<u>A prototype for SANDD: A highly-segmented pulse-shape-sensitive plastic scintillator detector incorporating silicon photomultiplier arrays</u> NIMA 942 (2019))
- Electronics:
 - Feature-extraction (Q/T) (Calibration of a compact ASIC-based data acquisition system for neutron/y discrimination and spectroscopy with organic scintillators NIMA 1057 (2023) 168699)
 - Full-waveform (this talk)
- Data analysis / simulations / ML:
 - GEANT4 / RAT-PAC (Scalability of Gadolinium-Doped-Water Cherenkov Detectors for Nuclear Nonproliferation Phys. Rev. Applied 18, 034059, Physics-informed machine learning approaches to reactor antineutrino detection, Directional response of several geometries for reactor-neutrino detectors Phys. Rev. Applied 22 (2024) 5, 054030, Ratpac-Two v1.0.0 https://doi.org/10.11578/dc.20240620.8)
- Deployment:
 - Underground/Underwater

This talk is about recent advances made at LLNL and pros/cons of various systems.

Lawrence Livermore National Laboratory LLNL-PRES-871849 L

LAPPD gen 1 and gen 2 — main difference

The new design allows for custom size and shape of anodes (pixelization).

LAPPD gen 2 — first tests

- LAPPD #133 from Incom (8 X 8 anodes, each 1 inch X 1 inch)
- HV connection (5 is better than 2, but likely not 1)

64 SMA connectors at the back and 5 SHV connectors.

Intern James Foot holding LAPPD 133 after unpacking.

Incom sends an LAPPD with a detailed test summary.

Two methods of powering LAPPD

- 2 channels:
- single HV for 2 MCPs

 \mathbf{x}_1

 $\leq R_2$

*₹R*₃

 $\leq R_4$

• photocathode

 V_T^T

 V_B^T

 V_T^B

 V_B^B

- 5 channels:
- 2 MCPs ("entry" and "exit")
- photocathode

More channels lead to better control, but increase cost and complexity.

Lawrence Livermore National Laboratory LLNL-PRES-871849

5 independent HV channels

- Photocathode
- Entry of entry MPC
- Exit of entry MCP
- Entry of exit MCP
- Exit of exit MCP

	Bottom MCP				Top MCP				Photocathode	
Step	V_B^B	I_B^B	V_T^B	I_T^B	V_B^T	I_B^T	V_T^T	I_T^T	V^{PC}	I^{PC}
1	-200	386.79	-600	15.07	-800	255.53	-1200	11.77	-1190	0.12
2	-200	379.19	-800	22.67	-1000	316.21	-1600	17.69	-1590	0.11
3	-200	371.52	-1000	30.36	-1200	376.63	-2000	23.63	-1990	0.08
4	-200	371.41	-1000	30.51	-1200	376.53	-2000	23.73	-2010	0.07
5	-200	371.36	-1000	30.53	-1200	376.51	-2000	23.75	-2200	0.07

This method results in a more stable/controlled operation.

Fast-timing: miniTimeCube era and why we need fast timing

- Fast-timing allows better track reconstruction
- Cherenkov and Scintillation light separation
- Trade-offs: pixel size, photocoverage, and cost

	Cherenkov	Scintillation
Spectrum	$\sim 1/\lambda^2$	Poisson-like
Timing	Instantaneous	Delayed
Direction	$\cos\theta \sim 1/n$	Isotropic

Cherenkov light in mTC (MA MCP-PMTs)

For pure liquid scintillator we likely don't worry (scintillation dominant), but for WbLS it is valuable.

The setup is robust and allows for X-Y alignment of the laser beam.

9

Laser fiber

Test stand for LAPPD gen 2 at LLNL

- Picosecond laser
- Collimator
- XY stepper motor
- Automated scans
- LED and laser

MĈP Bottom MCP laser 8×8 Anode

from idea to implementation:

SPE pulses LAPPD gen 2 — estimating gain

SPE pulse ~25 mV high and ~2 ns across.

The SPE peak on the magenta histogram (area under the cyan curve) is at about 60-70 mV * ns. The baseline is at ~20 mV*ns. subtracting the baseline, ~40 mV*ns

> An estimate for the **gain**: 40e-12 / (1.6e-19 * 50) = **5e6**

First data observed with a Tektronix scope (connected to H1 pad).

SPE peak is rather broad.

SPE pulses LAPPD gen 2

Trigger on H1 pad (yellow trace).

Trigger on delay generator/laser (10Hz, redtrace).

If triggering on the LAPPD, ringing is noticeable (~100 mVpp, ~100-ns, ~10-ns period).

Electronics

- Can we reach the \$10/channel?
- How many channels?

8-channel IceRingSampler

• Readout in situ?

Specification	HDSoC	AARDVARC
Channels	32/64	4/8
Timing resolution	<100 ps	< 5 ps (at 13 GSa/s)
Sampling rate	1-3 GSa/s	10–14 GSa/s
Analog bandwidth	1 GHz	> 1.6 GHz
Buffer length (samples/ch.)	2048	32k
Trigger buffer	$\sim 2 \ \mu s$	$\sim 3 \ \mu s$
Max rate zero-deadtime	23 kHz/channel ^a	125 kHz
Supply voltage / range	2.5 V / 0.5–2.2 V	1.2 V / 0.3–0.9 V
Input noise	1 mV	
ADC bits	12	12
Technology	250 nm CMOS	130 nm CMOS
Power/channel	20–40 mW	80 mW

4-channel AARDVARC eval board (SN 000!)

Connection to UH: Prof. Gary Varner's dream of "oscilloscope on a chip".

SCA

Analog Input

^↓ T/H

Model electronic pulses

AWGs have a vast functionality to allow various waveforms (essentially load an array sample-by-sample at 10 GSa/s).

"Markers" at the back allow additional functionality (e.g. delayed trigger)

Unlike arbitrary "function" generators, arbitrary "waveform" generators are more versatile/stable.

Log-normal distribution

A clean pulse reproduced with using the AWG.

Nalu readout with a splitter

Data looks good.

SPE data with NaluScope (AARDVARC 000 SOC)

This is the first time LAPPD gen 2 has been readout with AARDVARC SoC.

Lawrence Livermore National Laboratory LLNL-PRES-871849

U

Conclusion

- First Readout of LAPPD Gen 2: Successful integration with AARDVARC and HDSoC.
- Initial Test Results: Promising performance of new photosensors and electronics.
- Future Development: Significant R&D efforts anticipated for a final detector.
- Ongoing Tests at LLNL: Leveraging established infrastructure to advance neutrino detectors. Looking ahead:
- **Exploration of New Ideas**: Focus on cost-effective underwater and ground detectors.
- Development of Test Stands: For photosensors, electronics, and detection media.
- **R&D Initiatives**: Investigating novel techniques, materials, and engineering solutions.
- Utilization of Simulation and High-Performance Computing: To enhance detector design and performance.

Photosensors and fast-timing electronics are advancing.

Back-up

For students: visit careers.llnl.gov to apply for undergrad and grad internships.

Lawrence Livermore National Laboratory LLNL-PRES-871849