
same/opposite sign plots using “sig/tagflav” and “mcsig/tagflav”:

𝝀=0 𝝀=0.1 𝝀=0.5



lifetime_max = lifetime of B meson with larger x_vertex from IP



From this distribution, we see significant deviations by the 𝜆 = 0.1 low bin data, and the 𝜆 = 0.5 high bin data. Either:
● These are bugs in the generation/analysis (𝜆 = 0.5 looks like it has too much data, 𝜆 = 0.1 looks like it has too little)
● There is a non-trivial dependence on 𝜆 (=0 gives standard dist., turning on 𝜆 causes a discontinuity in dist., which then evolves 

continuously in 𝜆)
○ want to test this by plotting different 𝜆 values (𝜆 = 0.05 & 𝜆 = 1)

𝜆 = 0.5 high bin data

𝜆 = 0.1 low bin data
total events:
plt.hist(..., density=False, …)



A normalized plot of these distributions show a much more equal relationship for each 𝜆
→ Implies issue with my analysis (analysus…) rather than decoherence dependence

relative:
plt.hist(..., density=True, …)

NOT SURE THAT THIS CAN BE TRUSTED!!
● normalizes each of the 6 curves individually → lo/hi bins know nothing about each other

Standardize the 
binwidths/centers…



Making the binwidths the same for each dataset seems to fix things → no 𝜆 dependence

legend is wrong



Looking at other relationships:

∑dx values for hi/lo ∑t bins dxmax values for hi/lo tmax bins





∑Lifetime bin:

(0, 1) [ps]

(2, 3) [ps]

(6, 7) [ps]

(9, 10) [ps]

∑dx [cm]

Linear binning of the ∑Lifetime variable. Fitting the corresponding ∑dx distribution with a 
Gaussian → doesn’t seem to describe tails well enough…



Issue with fitting 
just a Gaussian



Initial results from a Gaussian convolved with Exponential tails to either side: (using curve_fit, 𝜒2/NDF needs to be calculated manually)



∑Lifetime bin:

(0, 1) [ps]

(4, 5) [ps]

(7, 8) [ps]

(9, 10) [ps]

∑dx [cm]

Updated using a Gaussian with exponential tails on either side. Rudimentary fitting using 
curve_fit, 𝜒2/NDF needs to be calculated manually.







Binning in lifetime_sum shape: not exponential

Can we do a binning that 
equalizes the events in each 
bin? How much does the dx 
distribution change within 
one of these high lifetime 

bins?



reconstructed variables (100k events)



reconstructed variables (200k events) → all r_bins (~72k events)



MC variables (errorbars are unfinished) (100k events)



reconstructed variables (200k events) → only r ≥ 0.6 (top 3 out of 7 bins) (~28k events)

versus all r-bins (~72k events)



Simulations: 72,798 B pairs simulated

legend is wrong



look into what 
may be causing 
this…

(Opp - Same) Asymmetry, full data (after recon & vertex cuts)



(Opp - Same) Asymmetry, full data (after recon & vertex cuts) using MC variables



MC data versus simulated data: 𝜆=0

Distributions are similar, but 
not identical: shape and 
x_median values



Fractional same flavour (3 dx_sum bins)



Fractional same flavour (3 dx_sum bins) MC variables



lam_0
the total chi_sq for deco data lam_0 is: 41.74/27.71
the number of degrees of freedom (# of bins) is: 16
the reduced chi squared for deco data lam_0 is: 2.61/1.73
this is the result from scipy for lam_0 and size 200k using flavour values: 0.644/0.647

Hand doing 𝜒2 calculation for same flavour oscillation plots

lam_01
the total chi_sq for deco data lam_01 is: 52.02/72.58
the number of degrees of freedom (# of bins) is: 16
the reduced chi squared for deco data lam_01 is: 3.25/4.54
this is the result from scipy for lam_01 and size 200k using flavour values: 0.562/0.786

lam_05
the total chi_sq for deco data lam_05 is: 98.98/145.89
the number of degrees of freedom (# of bins) is: 16
the reduced chi squared for deco data lam_05 is: 6.19/9.12
this is the result from scipy for lam_05 and size 200k using flavour values: 0.931/0.957

want to recheck the 
calculation??

full data/r >= 0.6 data


