Work left to (almost) demonstrate feasibility of measuring Lindblad decoherence parameter λ at Belle II

Hershel:

Linearity and Sensitivity at truth-level for 5k events

1. Estimate sensitivity to λ

- Plot sigma_ λ/λ for λ <1.0. We expect λ <<1.0 in nature. You could start with lambda = 0.05, 0.10, 0.15, 0.2, etc.
- 2. When the fitted lambda is biased, so is sigma_ λ . I think you can simple correct it as follows:
 - sigma_λ_corrected = sigma_λ*true_λ/mean_fitted_λ
- chose a) bins (for delta_t and t_min) and b) errors bars after binning so that bias for a low number of bins is removed.
 - a) for the bins, my intuition is that you want both the delta_t and t_min bins so that each bin has the same expected number of events.
 - b) this will probably need detailed discussion
 2

16

- Fix problem at delta t~0 for exclusive reconstruction of two B mesons.
- Suspect that tracks are shared among the B mesons. Can be fixed by explicitly checking this and vetoing such eents.
- [A less direct method would use a tighter cut on vertex (p-value > 0.5 or 0.9) cut also work, but might not be needed. Requiring istruth==1 might also work, but can not be used on experimental data.)]

• We need the Lindblad decoherence model in EvtGen to work with ALIAS, so that we can test $\lambda ! = 0$ for inclusive reconstruction

Other open questions and some next tasks

- The limit $\lambda \rightarrow$ infinity does not reproduce spontaneous dissentanglement. Should it?
- What is the measured size of the beam-spot in *x* now, and versus time, in Belle II data recorded to date?
- Rather than using x as a proxy for absolute decay time, can we
 improve t_{min} sensitivity by using all available (x,y,z) vertex info for both
 B-mesons and the measured beam spot size
- We may want to calibrate the t_{min} measurement by building a resolution function. That would then allow us to fit models in the 2d space of $(t_{min} vs \Delta t)$ [or equivalently, $t_{min}+t_{max} vs \Delta t$]
 - Perhaps we can validate the x resolution by measuring the B lifetime, similarly to Tim's ongoing Δt resolution calibration

Recent Quantum Decoherence Activities

TDCPV meeting June 2024 B2GM

Sven Vahsen, U. Hawaii

QM Decoherence Team at U. Hawaii

Sven Vahsen (group leader)

Alexei Sibidanov (postdoc)

Timothy Mahood (grad student)

- Today, mainly reporting outcomes of year-long undergraduate honors thesis projects by Hershel and Aleczander
- MPI and IPMU groups working on related subjects, MPI and UH starting to coordinate.

Lucas Stötzer (grad student)

Aleczander Paul (undergrad)

Hershel Weiner (undergrad)

$\Upsilon(4S) \rightarrow B^0 \overline{B^0}$: a Quantum Laboratory

- Non-local flavor entanglement is assumed "perfect" in analyses of B-mixing and TDCPV
 - Expect all B mesons to have opposite flavor at delta t=0.
- Sensitive searches for *deviations from nominal mixing and perfect entanglement are possible*
 - using Δt distributions
 - desirable to also measure individual B meson decay times (t1,t2)
- Belle II better suited than Belle
 - (eventually) higher statistics
 - improved vertex resolution
 - better tagging efficiency
 - smaller luminous region \rightarrow access to t1,t2

https://arxiv.org/abs/2402.17260

What can we probe in this Quantum Laboratory?

Six broad categories

- 1. B meson properties $(\Delta m, \tau_B)$, CPV in the weak interaction (e.g. sin $2\phi_1$)
- 2. BSM Symmetry violations (CPTV, Lorentz symmetry violation)
- 3. Search for evidence of hidden variable theories (alternatives to QM)
- 4. Collapse theories (augmentations of QM) ?

5. Quantum Decoherence

This talk.

Belle, Babar, (D0, LHCb,...)

Belle (PRL 99, 131802 – 2007)

Spontaneous versus environmental decoherence

The Belle PRL on EPR

A. Go et al. used deconvolved Δt distribution, excluded

• "Pompili-Selleri" hidden variable model

 $A_{\rm PS}^{\rm max}(t_1, t_2) = 1 - |\{1 - \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\rm min}) + \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\rm min})|, \text{ and } (3)$ $A_{\rm PS}^{\rm min}(t_1, t_2) = 1 - \min(2 + \Psi, 2 - \Psi), \text{ where } (4)$ $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\rm min}) - \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\rm min}). \quad (5)$

"Spontaneous Disentanglement" of all BB pairs

$$A_{\rm SD}(t_1, t_2) = \cos(\Delta m_d t_1) \cos(\Delta m_d t_2)$$
(2)
= $\frac{1}{2} [\cos(\Delta m_d (t_1 + t_2)) + \cos(\Delta m_d \Delta t)],$

- Fractional Spontaneous Disentanglement
 - 3% +/- 6%

A. Go et al. (Belle Collaboration), PRL 99 (2007)

Note: models depend on t1, t2, but these were not measurable in Belle, hence integrated out

Discrimination Power of individual B meson decay times t1, t2

Access to t₁ generally adds a new dimensions and should increase sensitivity

Asymmetry for QM

TDCPV meeting @ June 2024 B2GM

Sven Vahsen

Lindblad Type Decoherence

- Decoherence begins after $\Upsilon(4S)$ decay and ends at first B meson decay
- Parameter λ∈[0, ∞) characterizes how much decoherence is in the system
- Slow acting decoherence
- Hershel Weiner (Hawaii undergrad) confirmed theory predictions for Belle II:

$$N=rac{1}{4}e^{-\Gamma(t_1+t_2)}[\cosh(rac{\Delta\Gamma\Delta t}{2})-\mu e^{-\lambda t_1}\cos(\Delta m\Delta t)]$$

µ=+1: same flavor decays, -1: opposite flavor decays

- As decoherence strength parameter λ increases; same-sign B meson pairs at $\Delta t = 0$ become allowed
- model depends on individual t1 and t2, but that has been integrated out in figure $\rightarrow \Delta t$ dependence looks like miss-tagging

BB pair flavor vs t₁, t₂ for Lindblad decoherence

 λ (decoherence strength)

- As decoherence strength parameter λ increases
- Number of same-sign B meson pairs at $\Delta t = 0$ increases
- In this 2d plane, pattern distinct from miss-tagging (assigning wrong b-flavor in reconstruction)

B meson flavor vs $\sum t$, Δt for Lindblad decoherence

Measuring $\sum t$ (or equivalently; just t₁) in addition to Δt should enhance sensitivity to decoherence, and the difference between miss-tagging and decoherence

 $\sum t = t_1 + t_2$

 $\Delta t = t_2 - t_1$

Fitting for Lindblad Decoherence Parameter λ using truth-level decay times and flavor

2d binned fit: 10 Δt bins and 3 t_{min} bins .

100k events per fit

Fitting for Lindblad Decoherence Parameter λ using truth-level decay times and flavor

2d binned fit: 10 Δt bins and 3 t_{min} bins .

100k events per fit

18

Fitting for Lindblad Decoherence Parameter λ using truth-level decay times and flavor

2d binned fit: 10 Δt bins and 3 t_{min} bins .

100k events per fit

dtbins = 10, tmin bins = 3, number of simulations = 100

Linearity and Sensitivity at truth-level for 5k events

Sensitive to true λ Fitter less bias with more bins At truth-level >5 sigma sensitivity w/5k event for λ >~0.5

Sven Vahsen

Obtaining Δt , t_{min} from *reconstructed* quanties

Use correlation to find difference in B meson lifetime (commonly done)

Discovered correlation between t and x, found proxy for absolute B meson lifetime!

Non-zero correlation due to crossing angle!

Critical issue: Size of IP

Figure 8: Decay vertex accuracy distributions with best fit Lorentzian for signal decays (left) and generic decays overlaid with signal decays (right) along each coordinate axis of the detector. "ER" refers to exclusive reconstruction B mesons, and "IR" refers to inclusive reconstruction B mesons.

Look like IP shape in simulation is based on SuperKEKB design --> should switch to run-dependendent MC. Not fully sure if yellow table (from machine group) is fully accurate. But, σ_x appears to be small even before beams are fully focused! Lucky for us! Measurement looks feasible already now! TDCPV meeting @ June 2024 B2GM Sven Vahsen

			KEK	В	S	uperKEKB	
σ_x		1.		150 µm		10 µm	
	σ_{y}		940 nm		50 nm		
	σ_z , eff		7 mm		0.25 mm		
		KEKB (LER, achie	ved)	SuperKEKB (LER, design)		SuperKEKB (LER, achieved)	
σ_{x}^{*}		147 μm		10.1 μm		17.9 μm	
σ_x^* effective		-		249 µm		249 µm	
σ_{y}^{*}		~1 µm		48 nm		223 nm	
σ_z^*		~7 mm		6 mm		~6 mm	
σ_z^* effective		-		0.24 mm		0.43 mm	

Figure 11: Distribution of the truth level production vertex of the B mesons. "ER" refers to exclusive reconstruction B mesons, and "IR" refers to inclusive reconstruction B mesons.

A closer look: which x_B coordinate works best?

Separate reconstructed events into two x_B bins...

- We obtain two different t distributions if we use x_{max} or $x_{min} + x_{max}$
- We have access to two bins of absolute B meson decay time
- This is after reconstruction i.e. technique appears experimentally feasible!

Reconstructed Δt distributions, $\lambda = 0$

Flavor vs Reconstructed Lifetime

Exclusive hadr. reco of both Bs Exclusive hadr. reco of one B, inclusive of other 1.0 1.0 ER $0\mu m < x_{sig} < 200 \ \mu m$ IR $0\mu m < x_{sig} < 200 \ \mu m$ ER -200 μ m < x_{sig} < 0 μ m IR -200 μ m < x_{sig} < 0 μ m 0.8 0.8 Suspect 0.6 0.6 Bug near $\frac{N_{sf}}{N_{sf} + N_{of}}$ $\frac{N_{sf}}{N_{sf}+N_{of}}$ $\Delta t \simeq 0$ 0.4 0.4 0.2 0.2 0.0 0.0 -2 -2 Δt (ps) Δt (ps)

This is with default EvtGen (λ =0, no decoherence). Alexei Sibidanov has implemented decoherence (any λ) into EvetGen, but can only be used with exclusive case *for now*.

TDCPV meeting @ June 2024 B2GM

Sven Vahsen

Reconstructed Δt distributions, $\lambda = 0$

Exclusive reconstruction of both Bs. Data binned using x_{max}. Custom EvtGen. 33k events

Reconstructed Δt distributions, $\lambda = 0.5$

Exclusive reconstruction of both Bs. Data binned using x_{max}. Custom EvtGen. 33k events

Clearly observe decoherence signature using only reconstructed quantities

Sven Vahsen

Reconstructed Δt distributions, $\lambda = 1.0$

Exclusive reconstruction of both Bs. Data binned using x_{max}. Custom EvtGen. 33k events

Clearly observe decoherence signature using only reconstructed quantities

Sven Vahsen

Summary & Further Plans

• Two U. Hawaii undergrads (Hershel and Aleczander) developed

- Proof-of-concept truth-level binned fits sensitive to Lindblad decoherence.
- A first, straightforward experimental strategy to obtain absolute t_B!
- This work is being continued by two Hawaii PhD students
 - Tim: "Lindblad" environmental decoherence, hadronic decays
 - Lucas: fractional spontaneous decoherence, hadronic decays
 - Searches for Lindblad decoherence and other models appear feasible!
 - Exploit nano-beam scheme to obtain absolute B meson decay times
 - Only possible w/ SuperKEKB & Belle II

BACKUP

 ϵ exclusive (both Bs hadronic): 15.23% ϵ inclusive (one B hadronic): 28.18% BF hadronic: 0.07%

Preliminary, need to check numbers For 1 ab-1 $1.1*1E9*(.0007)^{2}*0.15 = 80$ exclusive events 2*0.5*1.1*1E9*(.0007)*0.28= 215600 inclusive events

1.
$$B^0 \to (D^- \to K^+ \pi^- \pi^-) \pi^+$$

2.
$$B^0 \to (D^{*-} \to \overline{D^0} \pi_s^-) \pi^+$$
 where $\overline{D^0} \to K^+ \pi^-$

3.
$$B^0 \to (D^{*-} \to \overline{D^0} \pi_s^-) \pi^+$$
 where $\overline{D^0} \to K^+ \pi^- \pi^0$

4.
$$B^0 \to (D^{*-} \to \overline{D^0} \pi_s^-) \pi^+$$
 where $\overline{D^0} \to K^+ \pi^- \pi^+ \pi^-$

Figure 4: Feynman diagram of $B^0 \to D^-\pi^+$ and $\overline{B^0} \to D^+\pi^-$.

TDCPV meeting @ June 2024 B2GM

The $\Upsilon(4S) \rightarrow B^0 \overline{B^0}$ Quantum Laboratory

$$|\Psi(t)
angle = rac{e^{-t/ au_{B^0}}}{\sqrt{2}} \left[|B^0(ec{
ho})\overline{B}^0(-ec{
ho})
angle - |\overline{B}^0(ec{
ho})B^0(-ec{
ho})
angle
ight]$$
(Eq. 1)

- $\Upsilon(4S) \rightarrow B^0 \overline{B^0}$ decays via strong interaction; initial state C=-1 charge conjugation eigenvalue must be conserved
- Hence, $B^0 \overline{B^0}$ pair is flavor entangled (Eq. 1)
- If one B decays into a flavor specific final state at time t₁...
 - ...then the other meson collapses into a state of opposite flavor instantaneously
 - ... but it will keep undergoing flavor oscillations until it, too, decays
- "EPR-style" entanglement
 - non-local, quantum super-position state

Example: weak sensitivity to $\sum t \rightarrow two bins only$

Quantum Decoherence

THE FRONTIERS COLLECTION

HERENCE AND THE OUNTUN-TO-CL L TRANSITION DECOHERENCE AND T TUM-TO-CLASSICAL TRANSITION DE NCE AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU TO-CLASSICAL TRANSITION DECOH AND THE QUANTUM-TO-CLASSIC SITION DECOHERENCE AND THE QU

Deringer

Maximilian Schlosshauer DECOHERENCE AND THE QUANTUM-TO-CLASSICAL TRANSITION

- Interaction of entangled states with environment can explain appearance of classical behavior at macroscopic scales
- Not an extension of QM, but rather a consequence of QM that was not previously appreciated
- Entangled states decohere over time
- Limits quantum computers
- SM decoherence
 - Our *BB* system evolves inside the SuperKEKB beam pipe
 - But even such an "isolated" system still interacts with background fields: CMB, cosmological neutrinos, Higgs condensate...

BSM decoherence

• Energy density components that we do not fully understand, yet, may also contribute: dark matter & energy

Plans @ Belle II (Hawaii/MPI/IPMU)

1. Repeat Belle analysis, but with higher statistics, more channels, better resolution

$$B^0
ightarrow D^- \pi^+$$
, $D^{*-} \pi^+$, $D^{*-} \rho^+$

2. Make use of better vertex resolution, better tagging, and smaller interaction region:

	КЕКВ	SuperKEKB
σ _x	150 μm	10 µm
σγ	940 nm	50 nm
σ _z , eff	7 mm	0.25 mm

 $\gamma\beta\tau c = 0.125 \text{ mm}$ Not ideal, but some sensitivity to t₁ should be achievable Transverse separation ~50 µm Vertex resolution σ_{res} ~20 µm

- 3. Probe more general decoherence models (such as Lindblad)
- 4. Work with theorists to estimate SM and BSM decoherence times
- 5. Understand possible systematics from unconstrained decoherence in other Belle II measurements (see <u>talk by H.G. Moser</u>)

TDCPV meeting @ June 2024 B2GM