Report on the list of actions for restarting the LINAC

LINAC/FEL meeting #3

Bidault Niels University of Hawaii at Manoa Department of Physics and Astronomy

September 11th, 2024

- HV Tests of the Thyratron
- Electron gun cathode reassembly
- Vacuum leaks in the RF gun sector
- Other projects

HV Tests of the Thyratron

HV Conditioning	Day 1	04/23/2024							
Duration (min)	Voltage (kV)	Rep. Rate (Hz)	Perveance (uPerv)	Ion pump LabView (uA)	Ion pump Varian (uA)	Kly. fil. I (A)	Kly. fil. U (V)	Kly. fil. P (W)	Clar
5	8.5	1							
5	16	1							
5	24	1	1.91	0.21	0.31				
5	24	4	1.91	0.6	0.62				
5	33	1	1.79	0.31	0.41	16	23.3	372.8	
10	33	4	1.81	0.84	0.95	16	23.4	374.4	
15	33	10	1.83	1.4	1.5	16	23.55	376.8	
5	35.35	1	1.78	0.32	0.45	16.05	23.3	374.0	
10	35.35	4	1.8	0.87	1	16.05	23.4	375.6	
15	35.35	10	1.81	1.5	1.7	16.05	23.45	376.4	
10	36.01	4	1.79	0.9	1	16.05	23.4	375.6	
10	36.47	4	1.78	0.89	1	16.05	23.35	374.8	
HV Conditioning	Day 2	04/24/2024							
Duration (min)	Voltage (kV)	Rep. Rate (Hz)	Perveance (uPerv)	Ion pump LabView (uA)	Ion pump Varian (uA)	Kly. fil. I (A)	Kly. fil. U (V)	Kly. fil. P (W)	Clar
5	8.5	1	2.18	0.1	0.15	15.7	23.4	367.4	
5	16	1	2.01	0.13	0.2	15.85	23.25	368.5	
5	24	1	1.91	0.18	0.27	15.9	23.25	369.7	
5	24	4	1.93	0.42	0.5	15.9	23.45	372.9	
5	33	1	1.8	0.26	0.36	16	23.3	372.8	
5	33	4	1.82	0.68	0.78	16	23.4	374.4	
10	33	10	1.82	1.2	1.7	15.95	23.5	374.8	
5	35.35	1	1.77	0.28	0.4	16	23.2	371.2	
5	35.35	4	1.79	0.72	0.8	16	23.3	372.8	
10	35.35	10	1.8	1.4	1.7	16	23.4	374.4	
10	36.01	4	1.79	0.8	0.85	16	23.3	372.8	
10	36.47	4	1.77	0.8	0.89	16	23.35	373.6	

Data of April 2024 before opening the vault for leak chasing

LabView Application:

- Perveance interlock threshold hardcoded and too high
- Corrections on the application are needed
- The control system generally works
- Add better visual information and logging of the data

Thyratron and PFN commissioning:

- Need to repeat the procedure several days before expecting it to work
- Able to reach the last step of the procedure
- Better understanding of the interlocks and schematics

To do:

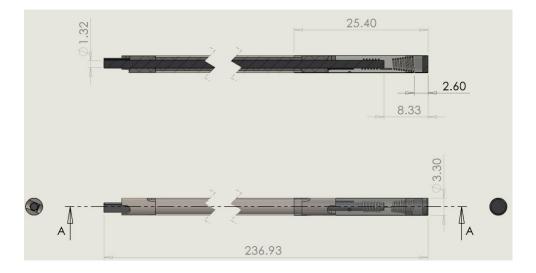
- More commissioning test will give better indication of the long-term behaviour of the machine
- The stability of the output pulse needs to be better analysed
- Deploy a consolidated LabView

- HV Tests of the Thyratron
- Electron gun cathode reassembly
- Vacuum leaks in the RF gun sector
- Other projects

Electron Gun Cathode Assembly

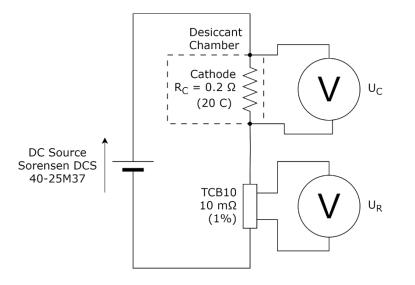
Possible defects:

- Add more metrology to the procedure when the cathode is installed in the micrometre:
 - Measure the angle of the cathode surface (e.g. with a dial indicator)
 - Measure the angle of the cathode rod
- Not the "cleanest" assembly cured during the baking out


LaB6 button installed:

- "Cathode #5" used and installed on 11/28/2011
- Last of the available cathodes with no scratch and good geometry.

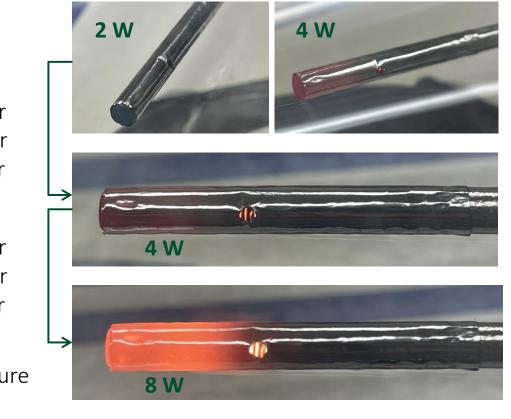
Height: 1.04 mm OD: 3.21 mm Bevel: 0.3 mm (45 deg.)



Cathode powering test and bake-out

Electrical components during the test:

- Measure U_r and deduce the current I
- Measure U_c and deduce the resistance R_c (RIGOL DM858 for variations over time)
- Deduce Joule and radiation heating

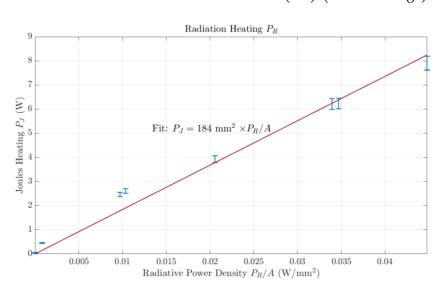

Bake-out: $P_{start} = 1.10^{-7}$ Torr $P_{peak} = 5.10^{-6}$ Torr $P_{final} = 7.10^{-8}$ Torr $P_{start} = 7.10^{-8}$ Torr

$$P_{peak} = 3.10^{-6}$$
 Torr
 $P_{final} = 4.10^{-8}$ Torr

Pump cart pressure >?>

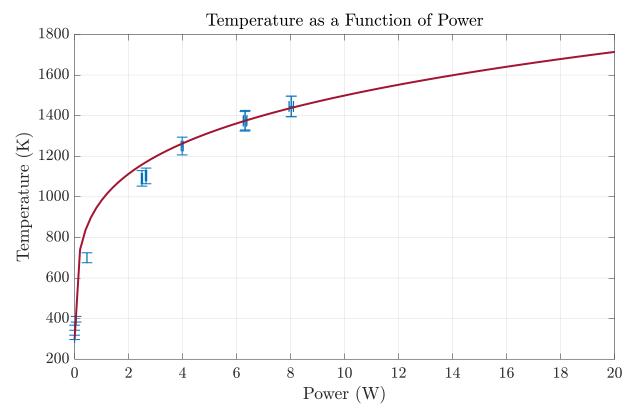
Real pressure

Aspects of the cathode during the powering steps:

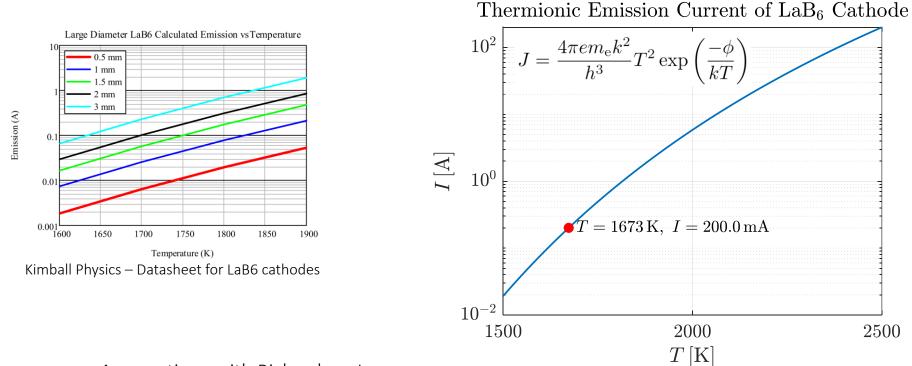

Temperature of the Tungsten heating coil

Properties of Tungsten available

• Thermal resistivity α as a function of the temperature


$$\frac{R}{R_0} - 1 = \alpha (T - T_0)$$

• Total emissivity ϵ as a function of the temperature


$RI^2 = A\sigma\epsilon(T)(T^4 - T_0^4)$

Fit used to extrapolate the temperature for higher power

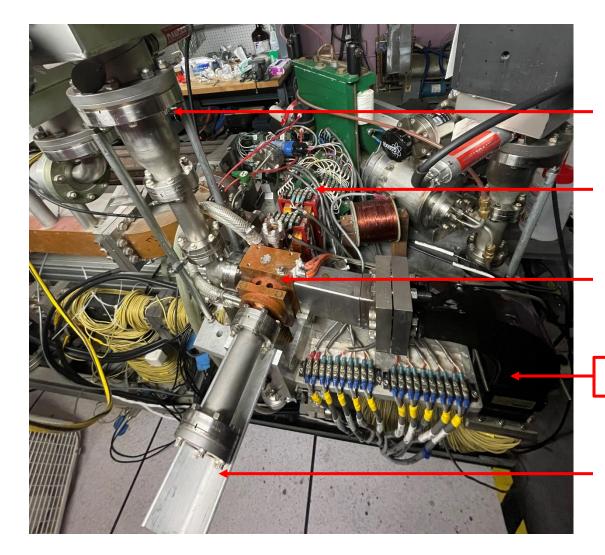
Thermionic Emission of the LaB6 buttons

Assumptions with Richardson Law:

- The effective work function for single-crystal LaB6 <100>, Φ = 2.66 eV.
- The effective flat surface of emission does not include the bevel.
- The emission from the cathode is not space-charge limited, otherwise must use a Child-Langmuir Law:

$$J = \frac{4\varepsilon_0}{9} \sqrt{\frac{2e}{m_{\rm e}}} \frac{V^{3/2}}{d^2}$$

Discussion over the following steps: Cathode


- Finalized the new procedure
- Continue characterizing the cathode and increase the maximum power up to 20 W
- Finish preparing a second cathode and review the procedure for installing it in the micrometer
- Infer on the heat transfer efficiency between the Tungsten coil and the LaB6 button using SolidWorks (?)
- Verify in advance the functioning of the Gun Toroid 1 and 2 (?)

- HV Tests of the Thyratron
- Electron gun cathode reassembly
- Vacuum leaks in the RF gun sector
- Other projects

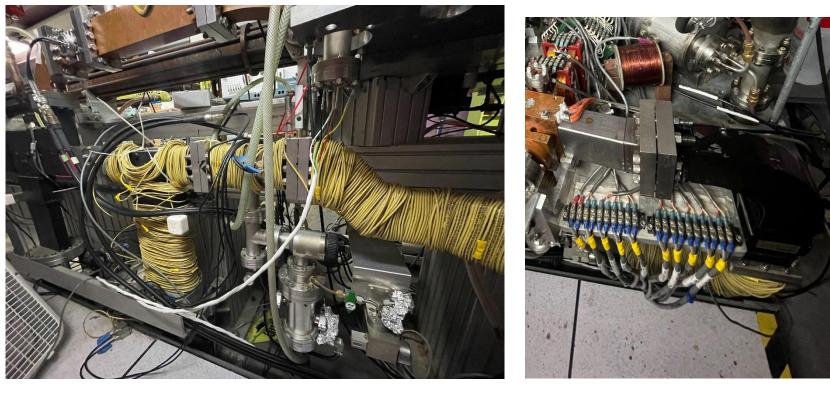
Vacuum Leaks in the RF Gun Sector

4th step, leak on the vacuum column: lon Pumps = 2.5 mA -> 5 mA

3rd step, leak near Gun Toroid1: lon Pumps = 2.5 mA -> 3 mA

2nd step, bake-out: lon Pumps = 150 uA -> 2.2 mA

Leak detected on the Waveguide


1st step, cathode removal: lon Pumps = 120 uA -> 130 uA

Discussion over the following steps: Vacuum Leaks

- Remove H-bend Waveguide to repair or replace.
- Install RF windows and SF6 gas injection system if compatible with the phase shifter.

Vacuum Leaks in the RF Sector

- HV Tests of the Thyratron
- Electron gun cathode reassembly
- Vacuum leaks in the RF gun sector
- Other projects

Beam Transport Lattice

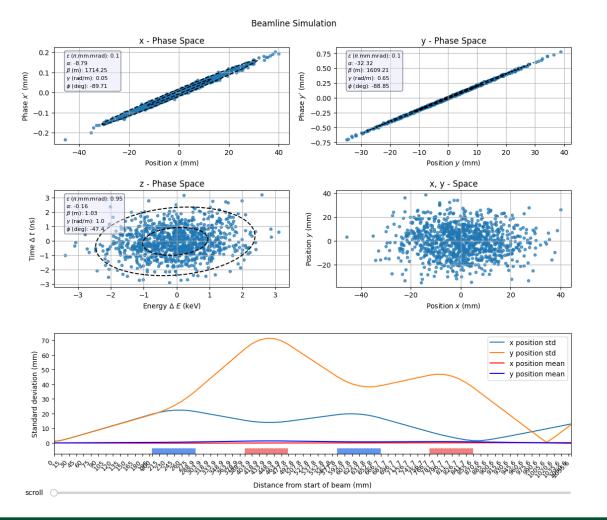
Beamline elements distances from previous reviews

Nomenclature	z start (m) z	mid (m)	z end (m)	z logbook UH (m)	Element name	Channel #	Label	Difference	Sector	Eleme
start			0	0	LINAC			0.000	LIN	
LIN.QPF.004	0.359	0.403	0.448	0.394	Quad	20		-0.010	LIN	QPF
					Beam position monitor				LIN	BPM
LIN.QPD.007	0.645	0.689	0.733	0.699	Quad	21	LQ2	0.010	LIN	QPD
LIN.STV.008				0.838	V. Corrector	22	VC1		LIN	STV
LIN.SPC.011				1.105	Spectrometer	23	LSP		LIN	SPC
					Energy measurement					
LIN.STV.015				1.461	V. Corrector	24	VC2		LIN	STV
DC1.OTR.016	1.633	1.633	1.633		OTR Screen		OS1		DC1	OTR
DC1.SB1.018	1.708	1.752	1.797	1.753	Split Bend 1 start	26	SB1a	0.000	DC1	SB1
DC1.QPC.021	2.033	2.077	2.122	2.070	Chromacity guad	28	SB1Q	-0.007	DC1	QPC
DC1.SB1.024	2.358	2.403	2.447	2.400	Split Bend 1 end	26	SB1b	-0.002	DC1	SB1
					Beam position monitor		BPM1		DC1	BPM
DC2.QPF.028	2,735	2.780	2.824	2.769		29	F1QA	-0.011	DC2	OPF
DC2.OPD.029	2.867	2.912	2,956			30	F1OB	-0.016	DC2	OPD
DC2.QPF.030	3.000	3.044			•	31	F1QC	-0.021		QPF
DC2.0TR.032	3.219	3.219			OTR Screen		OS2		DC2	OTR
DC2.SB2.033	3.298	3.318			Split Bend 2 start	32	SB2a	-0.016	DC2	SB2
DC2.QPC.036	3.554	3.599			Chromacity quad	34	SB2Q	-0.005		OPC
DC2.SB2.039	3.859	3.880			Split Bend 2 end	32	SB2b	-0.019		SB2
DC2.STV.041					V. Corrector	35	VC3		DC2	STV
DC2.STH.041					H. Corrector	36	HC1		DC2	STH
DC2.0PF.042	4.152	4.196	4.241	4.204		37	F2QA	0.007	DC2	OPF
DC2.QPD.043	4.292	4.336		4.331	•	38	F2QB	-0.005		QPD
DC2.QPF.045	4.431	4.476		4.483		39	F2QC	0.007		OPF
					Beam position monitor		BPM2		DC2	BPM
DC3.QPF.050	4.935	4.980	5.024	4.978		40	F2QD	-0.001		OPF
DC3.0PD.051	5.075	5.119		5.131		41	F2OE	0.012	DC3	OPD
DC3.QPF.053	5.215	5.259				42	F2QF	0.012		QPF
DC3.0TR.055	5.498	5.498			OTR Screen		OS3		DC3	OTR
DC3.SB3.056	5.574	5.595			Split Bend 3 start	45	SB3a	0.019		SB3
					H. Coil?					
DC3.QPC.059	5.831	5.875	5.920	5 867	Chromacity guad	47	SB3Q	-0.008	DC3	OPC
2001010000	01001	0.070	01020	0.007	H. Coil?		0000	0.000		4.0
DC3.SB3.062	6.136	6.156	6.176	6.147	Split Bend 3 end	45	SB3b	-0.009	DC3	SB3
DC3.STV.065		0.200			V. Corrector	43	VC4		DC3	STV
DC3.STH.065					H. Corrector	44	HC2		DC3	STH
DC3.QPF.064	6.369	6.414	6,458	6.566		48	F3QA	0.152		OPF
DC3.QPD.066	6.558	6.602		6.680		49	F3QB	0.078		QPD
200.Q1 2.000	0.000	0.002	0.047	0.000	Beam position monitor	40	BPM3	0.070	IPC	BPM
					Interaction point chamber start		IPa		IPC	
IPC.XRS.071	7.110	7.110	7.110		X-ray screen (IP)		IPXS		IPC	XRS
1 03410.072	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/.110	/.110		OTR Screen		IPOS		IPC	OTR
					Scanning wire		IPSW		IPC	BSW
					Interaction point chamber end		IPb		IPC	0011
DC4.STV.074				7 353	V. Corrector	51	VC5		DC4	STV
DC4.QPF.074	7.326	7.370	7.415	7.442		50	F3QC	0.072		QPF
DC4.0PD.075	7.320	7.514				59	F3QD	0.072		QPD
DC4.0FB.075	7.773	7.773			OTR Screen	55	OS4	0.000	DC4 DC4	OTR
DC4.018.078	7.851	7.871			Split Bend 4 start	52	SB4a	-0.023		SB4

Other documents and information:

- Some geometrical information on the magnets
- Calibration values for the spectrometer and alpha-magnets
- DC channel list
- Database restored with magnets values, 2009
- A few beam profiles from 2009
- A few simulation results

To do:


- Characterize quadrupole and dipole fringe fields
- Implement a new transport code

Quadrupole length (m):	0.0889			
Quadrupole aperture (m):	0.027			
SB dipole aperture (m):	0.014478			
Mkiii dipole aperture (m):	0.0127			
Undulator half length (m):	0.5405			
Undulator K_hat_squared:	1			
Kinetic energy (MeV/c^2):	37.8			

Beam Transport Simulation

Framework for linac beam dynamics simulations developed by Christian Komo in Python (GitHub link)

Modular upper layer of the simulation, which can use:

- Arbitrary beam distribution
- Simple beam matrix model
- Complex simulations using MadX, COSY Infinity or other codes
- Can provide optimization algorithm
- C. Komo to present the project in the future

Discussion about simulation codes and software licenses (CST?)

New and Refurbished Equipment

Safety:

- Personal dosimeters: Add Amir and Harsh?
- Radiation Monitors
- To do: Chemicals cabinet, general safety procedures and trainings to follow

Vacuum systems:

- Two Varian RVA-30-TR/O ion pumps, various gaskets, windows and a lot of VacSeal
- To do: Turbo pumps RGA SF6 injection system

RF System:

- 500 W Amplifier to drive the klystron from Microwave Amps Ltd
- To do: Control systems for the 500 W amplifier
- RF windows on the waveguide/phase shifter for the electron gun

Instruments:

- Workstation in the control room
- RIGOL and Fluke multimeters for data loging (C. Komo application), clamp meter
- Spot welder, ion gauge dual controller SRS IGC 100

Thank you for your attention

Conclusion:

- Main bottleneck before the restart is the vacuum leak in the RF gun sector
- The new cathode is promising
- HV commissioning test for the Thyratron achieved and the control system is working
- The low RF power tests were promising
- Procedures, lab safety measures and equipment purchase

Progress needed:

- H-bend waveguide replacement and solve the vacuum leaks in RF gun sector
- Drive RF amplifier for the Klystron and coupling value between LFP and GFP
- Testing of beamline elements (magnet powering, HV switch,...)
- Beam dynamics simulation including more realistic models of the magnets

