Fast Machine Learning Inference for Scientific Discovery

Particle Physics Seminar, University of Hawaii, Manoa March 28, 2024

Elham E Khoda

Data-Driven Discovery

Standard Model of Particle Physics

Elham E Khoda

Physics Beyond the Standard model

Big Questions

Nature of Dark Matter

Matter AntiMatter Asymmetry

Origin of Neutrino Mass

Origin of Flavor

Evolution of the Early Universe

Mediator to the Dark Sector

Standard Model

Extension to the SM

How to search for such Mediators in Collider Experiments?

Large Hadron Collider (LHC) and the ATLAS experiment

- World's largest and most powerful particle collider
- Collides protons bunches (~10¹¹ protons) spaced by 25 ns

cle collider s) spaced by 25 ns

The ATLAS Experiment

ATLAS is a general purpose detector

Elham E Khoda

How to search for such Mediators in the ATLAS Experiment?

Dijet Final State

Theory model-driven Discovery Regime

Model-dependent Search

Most sensitive approach for a particular new physics scenario \rightarrow Unlikely to probe a different scenario

Elham E Khoda

Example: 2-jet final state

Data-driven Discovery Regime

Anomaly detection

Identify data with features that appear inconsistent with those of the majority of the dataset

Elham E Khoda

For HEP application: Interested in an ensemble of events rather than a single outlier

Dilepton/ dijet / di-gamma invariant Mass

15

Resonant Anomaly Detection Search

Assumption: Signal is localized at least in one of the feature spaces (x) $p_{\text{signal}}(x)/p_{\text{background}}(x)$ is high

Increase Signal Sensitivity

Reduce background keeping as much signal as possible

VAE as density estimator

Elham E Khoda

Loss: $L_{VAE} = (1 - \beta) \times L_{MSE} + \beta \times KL$

Predict the background in the signal region

Model the multiple observables in the sideband regions

My Strategy to estimate the density

Elham E Khoda

Generative models (Generative Adversarial Network or Variational Autoencoder) to estimate the densities

Model background in the side-band

Features in the SR

Elham E Khoda

Compare Data and Prediction

Weakly Supervised Method

Weakly supervised = noisy labels

Let's assume we have: Two mixed samples of events with no label information

CWoLa (Classification Without Labels) method shows:

It is possible to train a classifier to distinguish red from green

Training on impure samples (different admixture) of S and B) is asymptotically equivalent of training on pure samples

Bkg-dominated sample S << **B**

Classifier

JHEP 10 (2017) 174

Let's use Generative Models

Elham E Khoda

Fast ML Inference for Scientific Discovery

Training on impure samples (different admixture of S and B) is asymptotically equivalent of training on pure samples

How Fast Machine Learning contributes to such Scientific Discovery?

ASIC

Are we storing them?

- New physics is clearly very good at hiding from us
- Depending on anomaly, we could have none left in recorded data

Elham E Khoda

Fast ML Inference for Scientific Discovery

iding from us /e none left in recorded data

More ML algorithms here?

Fast ML Inference for Scientific Discovery

Elham E Khoda

How to run an ML algorithm on FPGAs?

What is an FPGA?

Field Programmable Gate Arrays (FPGAs) are reprogrammable integrated circuits

- Contain many different building blocks ('resources') which are connected together as you desire
- Originally popular for prototyping ASICs, but now also for high performance computing

Building blocks:

- Multiplier units (DSPs) [arithmetic]
- Look Up Tables (LUTs) [logic]
- Flip-flops (FFs)

[registers] - Block RAMs (BRAMs) [memory]

What is an FPGA?

- Run at high frequency O(100 MHz)
 - Can compute outputs in O(ns)
- Low-level Hardware Description Language for programming Verilog/VHDL
- Possible to translate $C/C++ \rightarrow Verilog/VHDL$ using High Level Synthesis (HLS) tools

Building blocks:

- Multiplier units (DSPs) [arithmetic]
- Look Up Tables (LUTs) [logic]
- Flip-flops (FFs)

[registers] - Block RAMs (BRAMs) [memory]

What is an FPGA?

- **DSPs** (Digital Signal Processor) are specialized units for multiplication and arithmetic
- DSPs are often the most scarce for NNs
- Faster and more efficient than using LUTs for these types of operations

Building blocks:

- Multiplier units (DSPs) [arithmetic]
- Look Up Tables (LUTs) [logic]
- Flip-flops (FFs)

[registers] - Block RAMs (BRAMs) [memory]

What is an FPGA?

- Logic cells / Look Up Tables perform arbitrary functional operations on small bit-width inputs (2-6)
 - boolean, arithmetic
 - small memories
- Flip-Flops control the flow of data with the clock pulse

Building blocks:

- Multiplier units (DSPs) [arithmetic]
- Look Up Tables (LUTs) [logic]
- Flip-flops (FFs)

[registers] - Block RAMs (BRAMs) [memory]

Example: AMD Xilinx FPGA

AMD Xilinx VIRTEX UltraScale+ VU13P

- •12288 Multipliers
- •1.7M LUTs
- •3.4M FFs
- •95 Mb BRAM

 \vec{x}_M

Elham E Khoda

Credit: Dylan Rankin

Elham E Khoda

 \vec{x}_M

Elham E Khoda

Credit: Dylan Rankin

Elham E Khoda

High Level Synthesis with Machine Learning (hls4ml)

Elham E Khoda

High Level Synthesis with Machine Learning (hls4ml)

A software interface for implementing Neural Networks on an FPAG

- Supports many common layer like DNN, CNN, RNN, Graph NN etc
- Transformers were not implemented until December, 2023

All these ML algorithms could be used for several low-level tasks **Example:**

- Jet Energy Calibration
- Missing Transverse Energy reconstruction

<u>https://fastmachinelearning.org/hls4ml/</u> arXiv:2103.05579

Resource Limitation

Regardless of toolkit, FPGA size is the limitation of doing low latency ML

• Bigger FPGA \rightarrow more resources \rightarrow more computation \rightarrow larger networks

AMD Xilinx VIRTEX UltraScale+ VU13P

- •12288 Multipliers
- 1.7M LUTs
- 3.4M FFs
- •95 Mb BRAM

So efficient model design to reduce weights is crucial

Efficient Model Design

Elham E Khoda

Train a smaller model using a bigger model

Neural Architecture Search

Finding the optimal model architecture

ML Inference with FPGA

Tranformers

EK et al, NeurIPS 2023, <u>arXiv 2402.01047</u>

Recurrent Neural Networks

EK et al, Mach. Learn.: Sci. Tec. 4 025004

Autoencoders and Variational Autoencoders

Example: Jet tagging

Fixed Set of variables Dense Neural Network

> Variable sets Deep sets model

Images Convolution NN

Sequence of particles Recurrent NN, Transformers

> **Graphs** Graph Neural Network

b-tagging with transformer model

Identify b/c jets from light-flavored jets

Jets are treated as sequence of particles

 Very effective for natural sequences (collection of particles)

Transformer Architecture

No. of parameters ~9k

Note:

Positional encoding was not used for this model

• It is not crucial for this application

$$O_h = \operatorname{softmax}\left(\frac{\zeta}{\zeta}\right)$$

T 7

Model performance: ROC

- All the benchmark models are trained using Keras + TensorFlow
- Weights and biases are represented by 32 bit floating point numbers

ing Keras + TensorFlow

Quantization

Quantization – Reducing the bit precision used for NN arithmetic

Why this is necessary?

- Floating-point operations (32 bit numbers) on an FPGA consumes large resources
- Not necessary to do it for desired performance
- hls4ml uses fixed-point representation for all computations
 - Operations are integer ops, but we can represent fractional values

0101.1011101010

fractional

width

Example: <20, 10> Total Integer Width

AUC after HLS conversion

Relative AUC = $\frac{\text{HLS AUC}}{\text{Floating - point AUC}}$

 Post-training quantized Transformer models (with optimal precision) performs similar to the floatingpoint models

> **Best Config** Integer bits = 10 Fractional bits = 10

Quantization Strategies

Quantization-Aware Training

- QKeras
- PyTorch (limited options)
- QONNX (in development)
- Bravitas

Post Training Quantization

HLS Conversion

(hls4ml)

• TensorFlow (limited options)

HLS Conversion (hls4ml)

PTQ = Post training Quantization QAT = Quantization-aware Training

Implementation Details

- Pipelining the MHA into 4 stages
- •Using FIFOs for the data stream across stages to save the FF usage
- Enable parallel processing for multiple heads
- Applying reuse factor to optimized the resource usage for DSP, and other resources
- Using an optimized softMax layer in stage 3

Single-head attention

$$O_h = \operatorname{softmax} \left(\frac{Q_h}{M_h} \right)$$

- Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in each layer
- Configure the "reuse factor" = number of times a multiplier is used to do a computation

Parallelization

HLS synthesis: DSP and LUT usage

- **DSP usage** as a function of **Total bit width** after HLS synthesis
- The Jumps correspond to DSP input width

Elham E Khoda

Synthesized using Xilinx Kintex UltraScale **FPGA part:** xcvu13p-fhga2104-2L-e

Reuse and clk	Interval (cycle)	Latency (cycles)	Latency(time)
R1 (6.577 ns)	49	269	2.077 us
R2 (6.215 ns)	65	449	3.467 us
R4 (4.723 ns)	100	768	5.853 us

Observed Inference Latency ~ 2-6 µs

Transformer Models: beyond particle physics

Elham E Khoda

Transformer Models

Real-time Inference on Hardware

Custom Hardware

Custom Chip: ASIC

One Possible Method: Autoencoder

Autoencoders or Variational Autoencoders

- Reconstruction loss between input and output could be used as anomaly score
- CMS is already using this idea in their Run-3 trigger

Elham E Khoda

output could be used as anomaly score in-3 trigger

Latent Factor Analysis via Dynamic Systems (LFADS)

LFADS is a sequential model based on VAE

- •LFADS assumes the observed spikes are samples from a Poisson process with firing rates
- Decoder learns the firing rates a function of time
- Training objective: Decoder is trained to infer a reduced set of latent dynamic factors

Elham E Khoda

• High Luminosity LHC (HL-LHC) in ~2029:

• 4 times the current data taking rate

Shutdown/Technical stop

Commissioning with beam

Hardware commissioning

Protons physics

Ions

Future of the LHC

NDJFMAMJJASONDJF		2033										2034								2035									2036												2037										20						0																									
LS4	ND	D	J	F	= N	4	Α	Μ		J.	ןנ	A	S	50)	N	D	J	F	١	1/	4	Ν	J	J	1	4	S	С) [۱I	D	J	F	P	1/	4	Μ	J	J	1	4	S	0	Ν		J	I	FN	٩	A	М	J	J	Α		50	DI	1	D	J	F	Μ	Α	۱M	1	ן	J	A	S	5	0	N	D	J	F	Ν	1/	4	М	J	J
																		52	1																																								F	R	u	n	5	5																		

LHC

Fast ML Inference for Scientific Discovery

4x more collision rate

HL-LHC

ATLAS HL-LHC Data Processing: Online

ATLAS detector upgrade:

Upgrade in Detector Readout

• 10x faster data collection

• Better hardware in Level-O and EventFilter

Many subsystems will be upgraded to be compatible with high occupancy / trigger rates

Phase II ATLAS Trigger Overview

Elham E Khoda

Online Jet Energy Calibration in ATLAS

- BDT based regression model to predict the truth energy
- Could improve several physics analysis like di-Higgs

Work-in-progress

- Preliminary BDT model is synthesized using FwX tool
- 25 ns average Latency
- Minimal resource usage: ~1% LUTs

Synthesized using Xilinx Kintex UltraScale FPGA part: xcvu9p

Elham E Khoda

Application: Neuroscience

UW demo: Real time detection of neural states from high-density electrophysiology measurements to drive closed-loop manipulations

Motivation:

- Measure individual neurons
- But computations are performed by groups of neurons
- Auto-encoder models learn latent factors that seem to better capture the "computational units" in the brain
 - LFADs algorithm
- Don't have many tools to compute these in real time, •
- Will help us do experiments to test if they are meaningful computational units

Elham E Khoda

- Increasingly possible to perform low latency inference of ML models
 - Also low-power, high radiation

 Many cases, ML offers improved performance over traditional algorithms

• Fast ML could help enable discovery!

• Applications in many fields, areas

Summary

Real-time Al mini-course at IEEE NPSS 2023 (Vancouver)

Many thanks to my Collaborators!

Thank You!
Extra Slides

General approach:

each SoftMax output Si requires the calculation of the exponent of the difference between zj and zi, summed over all elements, and then inverted

Modified approach:

Stage 1: **Element-wise exponent computation**

Stage 2:

Sum of all the exponents -> Inverted using inverse look-up table -> stored in register

Stage 3: **Element-wise multiplication**

Softmax Optimization

Fig. 4. Block diagram of gFEX. FPGA A, B, and C are the same ultrascale FPGAs; the Hybrid FPGA is ZYNQ FPGA. The FELIX is a PCIe module designed for ATLAS System.

gFEX: Phase I Trigger upgrade

Computing Chalenges in ATLAS

To preserve current physics:

• 4 times the current data taking rate

Lacking sufficient budget to sustain required computing

Closing the Gap

Heterogeneous Computing Model

• Support for different type of hardware is becoming important

Direct Connection

CPUs and GPUs are connected

- Simple support for mixed hardware
- Scaleable
- Throughput optimization for multiple-core

Summary: Transformers

Three benchmark cases

- **Binary classifier:** ~3.3k parameters 1. - Car engine anomaly detection with Ford time series data
- 2. **3-class classifier:** ~10k parameters - particle physics application
- 3. 4-class classifier: ~3.3k parameters - LIGO gravitational wave detection application

Other Future applications:

Modeling Neural population Dynamics with **Transformer-based architecture**

What's Next? Transformers?

- Good for long sequences
- Potentially more useful for Gravitation Wave applications
- Using on LIGO signal background classification model

B-tagging Model 3-class classifier: ~10k parameters Classify b/c/light jets

- Latency of 2-3 μ s

Involves a lot of large matrix multiplication

• Implemented the on an FPGA

• Successfully synthesize

Other Applications: LIGO and Neuroscience

LIGO Gravitational Wave Experiment

Neuroscience: Detecting brain activities

Real time inference based on neuron activities

Classification: Signal, Glitch, Background

Generated Events Signal Region

Elham E Khoda

High Level Synthesis with Machine Learning (hls4ml)

This is not a exhaustive list

Mostly from Physics

Elham E Khoda

Large Hadron Collider at CERN

• World's largest and most powerful particle collider • Collides protons (most of the time) bunches (~10¹¹ protons in a bunch) spaced by 25 ns

Four major experiments on the LHC ring: ALICE, ATLAS, CMS, LHCb

centre of mass energy 2011: 7 TeV 2012: 8 TeV **2015 - 18** : 13 TeV 2022 - 25:13.6 TeV 2028 -: High Lumi LHC

In this talk

The ATLAS Experiment

General purpose detector

Muon Spectrometer: Four different detector technology

Calorimeter:

Electromagnetic (Liquid Argon), Hadronic (Liquid Argon (endcap) & Tile (barrel))

Solenoid Magnet: 2.0 T

Inner Detector:

Three different detector technology

- 1. Silicon Pixel
- 2. Silicon Strip
- 3. Straw Tubes: Transition Radiation Tracker (TRT)

Particle Reconstruction

Particles are reconstructed combining signatures from different sub-detectors

Electrons: Inner detector track + calorimeter deposit

Photons: Calorimeter deposit

Jets: Inner detector tracks (charged), Calorimeters

Muons: Inner detector and Muon spectrometer tracks

Neutrinos: Cannot detect, mostly resolved using missing transverse energy

ATLAS Phase-II Data Processing

• Usage of ML is growing over time

Active R&D Further improvements driven by more complicated algorithms

Usage of GPUs will be beneficial for the future LHC Runs (after 2026)

ATLAS Phase-II Data Processing

- ML has potential to improve physics performance in the trigger system
- Strict latency requirements: μ s (ms) for Level-0 (Event Filter) For Level-0 trigger \rightarrow we need to run ML on FPGAs

ATLAS Phase-II Data Processing

LO Trigger (hardware: FPGAs) – O(µs) hard latency • Typically coarse selections are applied

Event Filter (software: CPUs) – O(100 ms) soft latency

Offline (software: CPUs)

• Full event reconstruction, bulk of machine learning usage in ATLAS/CMS

More complex algorithms (full detector information available), some BDTs and DNNs used

Example: Jet Classification

Perhaps an unrealistic example for L1 trigger, but lessons are useful

Jet Classification: 5-class classifier

Five class classifier

Sample: ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

Elham E Khoda

Fast ML Inference for Scientific Discovery

q/g background

Jet-tagging ROC

Elham E Khoda

Jet-tagging ROC: Post Quantization

his4mi

Used precision: <16,6> Integet bits: 6 fractional bits: 10

Elham E Khoda

Fast ML Inference for Scientific Discovery

Scan to find optimal precision

Elham E Khoda

Scan fractional bits

Integer bits fixed to 6

(Example) 5-class jet-tagging: DSP usage

Elham E Khoda

(Example) 5-class jet-tagging: Timing

Recurrent Neural Networks

- Designed to work with sequential data • Text, audio, video, strokes, etc
- RNNs have a state, h_t , that is updated at each time step as the sequence is processed
- Recurrence relation at every time step

Recurrent Neural Network (RNN)

Output

Input

past memory

Implementation of RNN models:

- LSTM (Long Short-Term Memory)
- GRU (Gated Recurrent Unit)

LSTM vs GRU

- **3 gates:** Input, Output, Forget
- **2 States:** Cell state (C_t) and Hidden state (H_t)

- **2 gates:** Update and Reset
- **Single** Hidden state (H_t)
- Less number of matrix multiplications
- Faster to train

Gated Recurrent Unit (GRU)

Benchmark Examples

Three benchmark cases

- **Binary classifier:** ~4k parameters 1. Identify top-quarks
- **3-class classifier:** ~60k parameters 2. Classify b/c/light jets
- 5-class classifier: ~130k parameters 3. QuickDraw dataset: differentiate between Bees, Butterflies, Mosquitos, Snails, Ants

QuickDraw dataset

- All the benchmark models are trained using Keras + TensorFlow
- Weights and biases are represented by 32 bit floating point numbers

- point models
- Small performance degradation (< 5%) in the **GRU models** after quantization

Elham E Khoda

Post-training quantized LSTM models (with optimal precision) performs similar to the floating-

Fast ML Inference for Scientific Discovery

HLS Synthesis (RNN): DSP Usage

• **DSP usage** as a function of **Total bit width** after HLS synthesis • The Jumps correspond to DSP input width

Mach. Learn.: Sci. Tec. 4 025004

Synthesized using Xilinx Kintex UltraScale FPGA FPGA part: xcku115-flvb2104-2-i

• RNN-based models could give good performance at trigger-level jet identification

Implemented LSTM and GRU layers inside hls4ml source code

- b-tagging cannot be done in ATLAS hardware trigger, but possible in CMS

Due to QCD confinement we do not see quarks in isolation \rightarrow only exists in confinement of a hadron

Parton Shower Cascade of gluons

Elham E Khoda

Jets

Due to QCD confinement we do not see quarks in isolation \rightarrow only exists in confinement of a hadron

Parton Shower Cascade of gluons

Jets: Collection of particles

Collision

Jets

Due to QCD confinement we do not see quarks in isolation \rightarrow only exists in confinement of a hadron

Parton Shower Cascade of gluons

Jets: Collection of particles

Jets are experimental signature of quarks and gluons

Collision

Jets

108
Structures within jets

QCD jets Could have different substructure

109

High Momentum Particles

110

B-hadrons have measurable lifetime

- Creates displaced vertex
- Important quantity to identify b-jets

B-jet tagging

Physics Beyond Standard model

The Standard model does not describe the major portion of 5% the universe 68% Dark energy

