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Standard Model of Particle Physics
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Physics Beyond the Standard model
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Nature of Dark Matter 

Matter AntiMatter Asymmetry 

Origin of Neutrino Mass 

Origin of Flavor 

Evolution of the Early Universe 

Big Questions
New Heavy particle  

Z’
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Mediator to the Dark Sector
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Extension to the SM
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Standard Model

Z’
Z’ boson



How to search for such Mediators in  
Collider Experiments?



Large Hadron Collider (LHC)  and the ATLAS experiment 
• World’s largest and most powerful particle collider  
• Collides protons bunches (~1011 protons) spaced by 25 ns
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The ATLAS Experiment
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ATLAS is a general purpose detector



How to search for such Mediators in  
the ATLAS Experiment?
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Dijet Final State
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Example 
2-lepton / 2-quark  

final state

Dilepton/ dijet / di-gamma invariant Mass

Ev
en

ts narrow bump

Signature 
resonance on the  

combined mass distribution



Theory model-driven Discovery Regime 



Fast ML Inference for Scientific DiscoveryElham E Khoda

Model-dependent Search

12

Physics Scenario 
Signal model

Maximixe Sensitivity

Mediator

SM

SM

SM

SM

Nature of Dark Matter 

Matter AntiMatter Asymmetry 

Origin of Neutrino Mass 

Origin of Flavor 

Evolution of the Early Universe 

Big Questions

New Heavy particle  
Z’

Most sensitive approach for a particular new physics scenario 
 Unlikely to probe a different scenario →
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Example: 2-jet final state
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Data-driven Discovery Regime 
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Anomaly detection
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Identify data with features that appear inconsistent with those of the majority of the dataset

Dilepton/ dijet / di-gamma invariant Mass
Ev

en
ts narrow bump

For HEP application: Interested in an ensemble of 
events rather than a single outlier
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Resonant Anomaly Detection Search

16

Example: 
2 jet final state

Assumption: 
Signal is localized at least in one of the feature spaces (x) 

 is highpsignal(x)/pbackground(x)
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Increase Signal Sensitivity
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Reduce background keeping as  
much signal as possible

Estimate background  
with Generative algorithms
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VAE as density estimator
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Variational Autoencoder (VAE) to estimate 6-D density of the 
background distributions

Loss: LVAE = (1 − β) × LMSE + β × KL
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Predict the background in the signal region
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My Strategy to estimate the density
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Model background in the side-band
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Features in the SR
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Compare Data and Prediction
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Weakly Supervised Method

24

Let’s assume we have:  
Two mixed samples of events with no label 
information 

CWoLa (Classification Without Labels ) 
method shows: 
It is possible  to train a classifier to 
distinguish red from green

Training on impure samples (different admixture 
of S and B) is asymptotically equivalent of 
training on pure samples

Classifier

JHEP 10 (2017) 174

Signal-enhanced sample 
S >>B

Bkg-dominated sample 
S << B

Weakly supervised = noisy labels 
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Let’s use Generative Models
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2-prong signal: 
4 variables 

3-prong signal: 
6 variables 

Cut on  
classifier score  

to enhance   
discovery potential

Training on impure samples (different 
admixture of S and B) is asymptotically 
equivalent of training on pure samples
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How Fast Machine Learning contributes  
to such Scientific Discovery?
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ATLAS Run-3 Data Processing

28

ASIC FPGA CPU Cluster Grid
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ATLAS Run-3 Data Processing
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ASIC FPGA CPU Cluster Grid
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ATLAS Run-3 Data Processing
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ASIC FPGA CPU Cluster Grid
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ATLAS Run-3 Data Processing
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ASIC FPGA CPU Cluster Grid



Fast ML Inference for Scientific DiscoveryElham E Khoda 

Are we storing them?

32

• New physics is clearly very good at hiding from us  
• Depending on anomaly, we could have none left in recorded data
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ATLAS Run-3 Data Processing

33

ASIC FPGA CPU Cluster Grid

More ML algorithms here?



How to run an ML algorithm on FPGAs?
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What is an FPGA?
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Field Programmable Gate Arrays (FPGAs) are 
reprogrammable integrated circuits  

• Contain many different building blocks (‘resources’) 
which are connected together as you desire  

• Originally popular for prototyping ASICs, but now also 
for high performance computing

Building blocks:  
– Multiplier units (DSPs)  [arithmetic]  
– Look Up Tables (LUTs)    [logic]  
– Flip-flops (FFs)                    [registers]  
– Block RAMs (BRAMs)    [memory] 
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What is an FPGA?
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• Run at high frequency - O(100 MHz)  
▪ Can compute outputs in O(ns)  

• Low-level Hardware Description Language for 
programming 

Verilog/VHDL 

• Possible to translate C/C++    Verilog/VHDL using High 
Level Synthesis (HLS) tools

→

Building blocks:  
– Multiplier units (DSPs)  [arithmetic]  
– Look Up Tables (LUTs)    [logic]  
– Flip-flops (FFs)                    [registers]  
– Block RAMs (BRAMs)    [memory] 
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What is an FPGA?

37

• DSPs (Digital Signal Processor) are specialized units 
for multiplication and arithmetic  

• DSPs are often the most scarce for NNs 

• Faster and more efficient than using LUTs for these 
types of operations 

DSP 
(multiplication)

Building blocks:  
– Multiplier units (DSPs)  [arithmetic]  
– Look Up Tables (LUTs)    [logic]  
– Flip-flops (FFs)                    [registers]  
– Block RAMs (BRAMs)    [memory] 
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What is an FPGA?
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• Logic cells / Look Up Tables perform arbitrary 
functional operations on small bit-width inputs (2-6)  
▪  boolean, arithmetic 
▪  small memories  

• Flip-Flops control the flow of data with the clock pulse

Logic cell
Building blocks:  
– Multiplier units (DSPs)  [arithmetic]  
– Look Up Tables (LUTs)    [logic]  
– Flip-flops (FFs)                    [registers]  
– Block RAMs (BRAMs)    [memory] 
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Example: AMD Xilinx FPGA
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AMD Xilinx VIRTEX UltraScale+ VU13P

•12288 Multipliers  
•1.7M LUTs  
•3.4M FFs  
•95 Mb BRAM
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Inference on an FPGA

40

⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Credit: Dylan Rankin
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Inference on an FPGA

41

⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Multiplier  
Unit (DSP)

Credit: Dylan Rankinup to ~6k parallel operation (VU9P)  
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Inference on an FPGA
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⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Multiplier  
Unit (DSP)

LUTs, FFs, BRAMs

Credit: Dylan Rankin
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Inference on an FPGA
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⃗x1 ⃗xm ⃗xM

⃗xm = gm (Wm,m−1 ⃗xm−1 + b⃗m)
activation function

multiplication

addition

Multiplier  
Unit (DSP)

LUTs, FFs, BRAMs

Credit: Dylan Rankin

Hardware efficient  
activation function
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High Level Synthesis with Machine Learning (hls4ml)
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HLS 
Conversion

HLS 
Project

Tune

Optimized
HDL code Bit Files for FPGA

https://fastmachinelearning.org/hls4ml/ 
arXiv:2103.05579

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2103.05579
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High Level Synthesis with Machine Learning (hls4ml)
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A software interface for implementing Neural Networks on an FPAG 

• Supports many common layer like DNN, CNN, RNN, Graph NN etc 
• Transformers were not implemented until December, 2023  

All these ML algorithms could be used for several low-level tasks  
Example:  
• Jet Energy Calibration 
• Missing Transverse Energy reconstruction 

https://fastmachinelearning.org/hls4ml/ 
arXiv:2103.05579 

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2103.05579
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Resource Limitation
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Regardless of toolkit,  
FPGA size  is the limitation of doing low latency ML 

• Bigger FPGA → more resources → more computation → larger networks

AMD Xilinx VIRTEX UltraScale+ VU13P

•12288 Multipliers  
•1.7M LUTs  
•3.4M FFs  
•95 Mb BRAM

So efficient model design to reduce weights is crucial
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Efficient Model Design

47

Quantization

Reducing precision

32-bit floating-point (FP32)

16-bit (FP16) / 8-bit (FP8)

INT / fixed-point

Knowledge  
Distillation

Train a smaller model 
using a bigger model

Pruning

Remove synapses and 
neurons

Finding the 

Neural  
Architecture 

Search 

Finding the optimal 
model architecture
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ML Inference with FPGA
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 Recurrent Neural Networks

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output 
class probability: b / c / light

x 3

Tranformers 

Autoencoders and Variational Autoencoders

EK et  al, NeurIPS 2023, arXiv 2402.01047 

EK et  al, FastML@ICCAD 2023 
arXiv 2402.04274

EK et al, Mach. Learn.: Sci. Tec. 4 025004

https://arxiv.org/abs/2402.01047
https://arxiv.org/abs/2402.04274
https://iopscience.iop.org/article/10.1088/2632-2153/acc0d7
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Example: Jet tagging

49

Fixed Set of variables 
Dense Neural Network

Variable sets 
Deep sets model

Images 
Convolution NN

Sequence of particles 
Recurrent NN, Transformers

Graphs 
Graph Neural Network
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b-tagging with transformer model

50

Identify b/c jets from light-flavored jets 

Jets are treated as sequence of particles

b / c jets 

Jets from  
b- or c-quark 

 Displaces 
vertex
→

light jets
Jets from 
u/d/s-quarks 

 no specific 
structure
→
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Transformer Architecture 

51

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output 
class probability: b / c / light

x 3

Inputs

Multi-Head Attention
# of heads = 2, head size = 32 

Add

Feed Forward (2 Dense)
Units = [8, 6]

Add

Intermediate output

Note: 

Positional encoding was not used 
for this model 
• It is not crucial for this application 

No. of parameters ~9k
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Model performance: ROC
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• All the benchmark models are trained using Keras + TensorFlow 
• Weights and biases are represented by 32 bit floating point numbers
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Quantization
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Quantization – Reducing the bit precision used for NN arithmetic 

Why this is necessary?  
• Floating-point operations (32 bit numbers) on an FPGA consumes large resources 
• Not necessary to do it for desired performance 

• hls4ml uses fixed-point representation for all computations  
▪ Operations are integer ops, but we can represent fractional values

Example: 
<20, 10>

Total
Width Integer
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AUC after HLS conversion
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Relative AUC =  

• Post-training quantized Transformer models (with 
optimal precision) performs similar to the floating-
point models 

HLS AUC
Floating − point AUC

Best Config 
Integer bits =  10 
Fractional bits = 10
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Quantization Strategies

55

Post Training Quantization
hls4ml

Quantization-Aware Training
• QKeras 
• PyTorch (limited options) 
• TensorFlow (limited options) 
• QONNX (in development) 
• Bravitas

Initial Model

HLS
Conversion

 
(hls4ml)

HLS
Conversion

 
(hls4ml)
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AUC after HLS conversion

56

PTQ = Post training Quantization 
QAT = Quantization-aware Training
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Implementation Details

57

Linear Linear Linear

Q K V

Inputs

Matrix Multiply

Matrix Multiply

Scaling &
Softmax

Matrix
Reshape

Concat and Linear

Stage
2

Stage
1

Stage
3

Stage
4

•Pipelining the MHA into 4 stages  

•Using FIFOs for the data stream across stages to save the 
FF usage  

•Enable parallel processing for multiple heads  

•Applying reuse factor to optimized the resource usage for 
DSP,  and other resources 

• Using an optimized softMax layer in stage 3  

Single-head attention
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Parallelization

58

• Trade-off between latency and FPGA resource usage determined by the parallelization of 
the calculations in each layer  

• Configure the “reuse factor” = number of times a multiplier is used to do a computation
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HLS synthesis: DSP and LUT usage
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• DSP usage as a function of Total bit width after HLS synthesis 
• The Jumps correspond to DSP input width 

Synthesized using Xilinx Kintex UltraScale 
FPGA part:  xcvu13p-fhga2104-2L-e

Total available: ~1.72 million LUTs Total available: ~12k DSPs

 Observed Inference Latency ~ 2-10 s μ
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Latency

60

 Observed Inference Latency ~ 2-6 s μ
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Transformer Models: beyond particle physics
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Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output 
class probability: b / c / light

x 3

Transformer  
Models Custom Hardware

Gravitational Wave  
Data

Particle Physics 
Data

Neural Spike  
Data

FPGA

Custom Chip: ASIC

Real-time 
Inference  

on Hardware
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One Possible Method: Autoencoder

62

• Reconstruction loss between input and output could be used as anomaly score  
• CMS is already using this idea in their Run-3 trigger 

False Positive Rate
Tr

ue
 P

os
iti

ve
 R

at
e

Autoencoders or Variational Autoencoders 

4 different types of 
BSM signals
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Latent Factor Analysis via Dynamic Systems (LFADS)
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LFADS is a sequential model based on VAE 

•LFADS assumes the observed spikes are samples from a 
Poisson process with firing rates 

•Decoder learns the firing rates a function of time 
•Training objective: Decoder is trained to infer a reduced 
set of latent dynamic factors 
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Future of the LHC

64

• High Luminosity LHC (HL-LHC) in ~2029:  
• 4 times the current data taking rate

2022: Snowmass Community  
Planning

Today

2026: Upgrade for  
High Lumi LHC

2029: HL LHC 
Data Taking
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4x more collision rate

65

40

LHC HL-LHC
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ATLAS HL-LHC Data Processing: Online
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 ATLAS detector upgrade:  
Many subsystems will be upgraded to be compatible with high occupancy / trigger rates 

Upgrade in Detector Readout 
•10x faster data collection 
• Better hardware in Level-0 and EventFilter

1 MHz

Level-0 
Event Filter

10 kHz
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Phase II ATLAS Trigger Overview

67
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Online Jet Energy Calibration in ATLAS

68

• BDT based regression model to predict the truth energy  
• Could improve several physics analysis like di-Higgs 

Work-in-progress 
•Preliminary BDT model is synthesized using FwX tool 
• 25 ns average Latency 
• Minimal resource usage: ~1% LUTs

Synthesized using Xilinx Kintex UltraScale 
FPGA part:  xcvu9p
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Beyond High Energy Physics

69
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Application: Neuroscience

70
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Summary

71

•Increasingly possible to perform low latency 
inference of ML models 
•Also low-power, high radiation 

• Many cases, ML offers improved 
performance over traditional algorithms 

•Fast ML could help enable discovery! 

•Applications in many fields, areas

Real-time AI mini-course 
 at IEEE NPSS 2023 (Vancouver)



Thank You!

Many thanks to my Collaborators! 



Extra Slides
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Softmax Optimization

74

General approach: 
each SoftMax output Si requires the calculation of the exponent of the 
difference between zj and zi , summed over all elements, and then inverted

Stage 1: 
Element-wise exponent computation 

Stage 2: 
Sum of all the exponents 
-> Inverted using inverse look-up table 
-> stored in register 

Stage 3: 
Element-wise multiplication

Modified approach:
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gFEX: Phase I Trigger upgrade

75
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Computing Chalenges in ATLAS
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ATLASPreliminary To preserve current physics: 

• 4 times the current data taking rate 

Lacking sufficient budget to sustain 
required computing
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Closing the Gap
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Smarter algorithms: ML

Faster Hardware: FPGAs, GPUs
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Heterogeneous Computing Model

78

Direct Connection 
CPUs and GPUs are connected

As a Service 
No need to have a local GPU

• Simple support for mixed hardware 
• Scaleable 
• Throughput optimization for multiple-core

• Support for different type of hardware is becoming important
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Summary: Transformers

79

Three benchmark cases 

1. Binary classifier:  ~3.3k parameters  
- Car engine anomaly detection with Ford time series data 

2. 3-class classifier:  ~10k parameters 
- particle physics application 

3. 4-class classifier: ~3.3k parameters 
- LIGO gravitational wave detection application 

Other Future applications: 

Modeling Neural population Dynamics with 
Transformer-based architecture 

Transformer Block

Inputs

Flatten

Feed Forward (3 Dense)
Units = [32, 16, 8]

Output Layer
Softmax

Output 
class probability: b / c / light

x 3

 Observed Inference Latency ~ 2-10 s μ
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What’s Next? Transformers?

80

B-tagging Model 
3-class classifier:  ~10k parameters 
Classify  b / c / light jets

• Implemented the on an FPGA 

• Successfully synthesize  

• Latency of 2-3  s μ
b/c

light

•Good for long sequences 
•Potentially more useful for Gravitation Wave applications 

• Using on LIGO signal - background classification model

Involves a lot of large matrix multiplication
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Other Applications: LIGO and Neuroscience

81

Classification:  
Signal, Glitch, Background

Real time inference based on neuron activities

LIGO Gravitational Wave Experiment

Neuroscience: Detecting brain activities
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Generated Events Signal Region

82
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High Level Synthesis with Machine Learning (hls4ml)

83
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Many Other Tools

84

Neural Networks

Boosted Decision Trees (BDTs)

SLAC Neural Network Library (SNL)

This is not a exhaustive list 
  
Mostly from Physics

arXiv: 2004.03021
arXiv: 2305.19455

arXiv: 2002.02534 arXiv: 2104.03408

* ATLAS is using both
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Large Hadron Collider at CERN

85

• World’s largest and most powerful particle collider  
• Collides protons (most of the time) bunches (~1011 protons in a bunch) spaced by 25 ns

2011: 7 TeV 
2012: 8 TeV 
2015 - 18  : 13 TeV 
2022 -  25 : 13.6 TeV 
2028 -         : High Lumi LHC

centre of mass energy

In this talk

Four major experiments on the LHC ring:   
ALICE,  ATLAS, CMS, LHCb
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The ATLAS Experiment
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Inner Detector:  
Three different detector technology 

1. Silicon Pixel 
2. Silicon Strip 
3. Straw Tubes: Transition Radiation Tracker (TRT)

General purpose detector 

Muon Spectrometer:  
Four different detector technology 

Calorimeter:  
Electromagnetic (Liquid Argon), Hadronic (Liquid 
Argon (endcap) & Tile (barrel) ) 

Solenoid Magnet: 2.0 T  
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Particle Reconstruction

87

Particles are reconstructed combining 
signatures from different sub-detectors 

Electrons: Inner detector track + 
calorimeter deposit 

Photons: Calorimeter deposit 

Jets: Inner detector tracks (charged), 
Calorimeters 

Muons: Inner detector and Muon 
spectrometer tracks 

Neutrinos: Cannot detect, mostly resolved 
using missing transverse energy  
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ATLAS Phase-II Data Processing
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• Usage of ML is growing over time 

• Active R&D 
Further improvements driven by more complicated algorithms 

Usage of GPUs will be beneficial for the future LHC Runs (after 2026)

1 MHz

Level-0 

10 KHz

Event Filter
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ATLAS Phase-II Data Processing
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• ML has potential to improve physics performance in the trigger system 

• Strict latency requirements:  μs (ms) for Level-0 (Event Filter)  

For Level-0 trigger  we need to run ML on FPGAs →

1 MHz

Level-0 

10 KHz

Event Filter
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ATLAS Phase-II Data Processing
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L0 Trigger (hardware: FPGAs) – O(μs) hard latency 
• Typically coarse selections are applied 

Event Filter (software: CPUs) – O(100 ms) soft latency 
• More complex algorithms (full detector information available), some BDTs and DNNs used 

Offline (software: CPUs)  
• Full event reconstruction, bulk of machine learning usage in ATLAS/CMS

1 MHz

Level-0 

10 KHz

Event Filter
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Example: Jet Classification
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Perhaps an unrealistic example for L1 trigger, but lessons are useful
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Jet Classification: 5-class classifier
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Five class classifier  
Sample: ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets
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Jet-tagging ROC
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Jet-tagging ROC: Post Quantization
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Used precision: <16,6> 
Integet bits: 6 
fractional bits: 10
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Scan to find optimal precision
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(Example) 5-class jet-tagging: DSP usage
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(Example) 5-class jet-tagging: Timing
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Recurrent Neural Network (RNN)
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Implementation of RNN models: 

• LSTM (Long Short-Term Memory)  
• GRU (Gated Recurrent Unit)

 Recurrent Neural Networks 

• Designed to work with sequential data 
• Text, audio, video, strokes, etc 

• RNNs have a state,  , that is updated at each time 
step as the sequence is processed 

• Recurrence relation at every time step

ht

ht = fW ( xt , ht−1)
cell state Function  

with 
weights W

Input old state

̂y = f(xt , ht−1)
Input past memoryOutput
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LSTM vs GRU
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Ct−1
LSTM

Ct

Ht−1 Ht

xt

GRU
Ht−1 Ht

xt

• 3 gates: Input, Output, Forget 
• 2 States: Cell state ( ) and Hidden state ( )Ct Ht

• 2 gates: Update and Reset 
• Single Hidden state ( ) 

• Less number of matrix multiplications 
• Faster to train 

Ht

 = inputxt  = inputxt
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Gated Recurrent Unit (GRU)
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GRU
Ht−1 Ht

xt

<latexit sha1_base64="xlUoZVsIP2YfcF3ipV/aoiEU13I="></latexit>

rt = � (Wxr · xt + br +Whr · ht�1)
<latexit sha1_base64="gjQRcIoonwI5Ee5cxVrM1k17Txc="></latexit>

ut = � (Wxu · xt + bu +Whu · ht�1)

Reset:
Update:

<latexit sha1_base64="MC2Ndqw9gLAPooUTcE8mf4/DdAY="></latexit>

h̃t = tanh (Wxh · xt + bh + (rt � ht�1) ·Whh)
Candidate 

hidden state:

<latexit sha1_base64="s174iU3yvhaYOp3fsp23DjK7484=">AAACJHicbZDLSsNAFIYn9V5vVZduBotQEUsiooIIohuXCtYWmhAmk2k7dJIJMydCCXkYN76KGxdecOHGZ3ESu9DqgWF+vv8cZs4fJIJrsO0PqzI1PTM7N79QXVxaXlmtra3fapkqylpUCqk6AdFM8Ji1gINgnUQxEgWCtYPhReG375jSXMY3MEqYF5F+zHucEjDIr50M/AxyfIrT8nZlKAEXbM/J8S5uOHulsYNdWjgucBGybJAX0K/V7aZdFv4rnLGoo3Fd+bVXN5Q0jVgMVBCtu46dgJcRBZwKllfdVLOE0CHps66RMYmY9rJyyRxvGxLinlTmxIBL+nMiI5HWoygwnRGBgZ70Cvif102hd+xlPE5SYDH9fqiXCgwSF4nhkCtGQYyMIFRx81dMB0QRCibXqgnBmVz5r7jdbzqHzYPrg/rZ+TiOebSJtlADOegInaFLdIVaiKJ79Iie0Yv1YD1Zb9b7d2vFGs9soF9lfX4BU1WkDg==</latexit>

ht = ut � ht�1 + (1� ut) · h̃t

Output 
 hidden state:

DenseDense
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Benchmark Examples
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Three benchmark cases 

1. Binary classifier:  ~4k parameters  
Identify top-quarks 

2. 3-class classifier:  ~60k parameters 
Classify  b / c / light jets 

3. 5-class classifier: ~130k parameters 
QuickDraw dataset: differentiate between Bees, 
Butterflies, Mosquitos, Snails, Ants

QuickDraw dataset

top b/c light
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Model Performance: ROC
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• All the benchmark models are trained using Keras + TensorFlow 
• Weights and biases are represented by 32 bit floating point numbers

top-tagging model b-tagging model
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AUC after HLS conversion
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Relative AUC =  

• Post-training quantized LSTM models (with optimal precision) performs similar to the floating-
point models 

• Small performance degradation (< 5%)  in the GRU models after quantization

AUCHLS

AUCKeras

Mach. Learn.: Sci. Tec. 4 025004

https://iopscience.iop.org/article/10.1088/2632-2153/acc0d7
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HLS Synthesis (RNN): DSP Usage
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• DSP usage as a function of Total bit width after HLS synthesis 
• The Jumps correspond to DSP input width 

Synthesized using Xilinx Kintex UltraScale FPGA  
FPGA part: xcku115-flvb2104-2-i 

Mach. Learn.: Sci. Tec. 4 025004

https://iopscience.iop.org/article/10.1088/2632-2153/acc0d7
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Summary: RNN Models
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• RNN-based models could give good performance at trigger-level jet 
identification 

• Implemented LSTM and GRU layers inside hls4ml source code  

• b-tagging cannot be done in ATLAS hardware trigger, but possible in CMS
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Jets
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Due to QCD confinement we do not see quarks in isolation 

 only exists in confinement of a hadron 

Parton Shower 
Cascade of gluons 

→
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Jets

107

Due to QCD confinement we do not see quarks in isolation 

 only exists in confinement of a hadron 

Parton Shower 
Cascade of gluons 

Jets: 
Collection of particles

→
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Jets
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Jets are experimental signature of 
quarks and gluons

Due to QCD confinement we do not see quarks in isolation 

 only exists in confinement of a hadron 

Parton Shower 
Cascade of gluons 

Jets: 
Collection of particles 

→
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Structures within jets
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Semi-visible jets 
Contains dark-hadrons

QCD jets 
Could have different substructure
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High Momentum Particles
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q1

q2

b

b

q3

q4

q

q

Z
0

W+

t̄

t

W�

1
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B-jet tagging
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q1

q2

b

b

q3

q4

q

q

Z
0

W+

t̄

t

W�

1

B-hadrons have measurable lifetime 
• Creates displaced vertex 
• Important quantity to identify b-jets
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Physics Beyond Standard model
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The Standard model does not 
describe the major portion of 
the universe 


