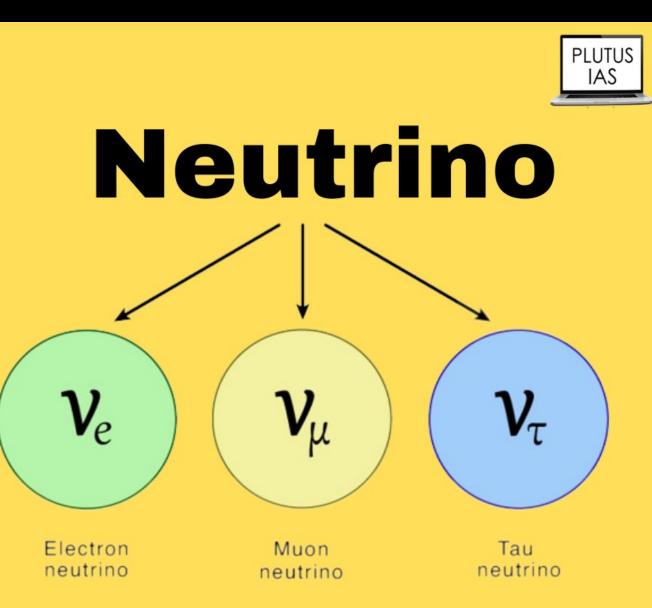
The First Neutrino **Observation of** the Galactic Plane


<u>Observation of high-energy neutrinos from the</u> <u>Galactic plane</u>, IceCube collaboration, 2023 **Letrell Harris**

Overview

- What are neutrinos
- What is the IceCube Observatory
- Detecting neutrinos from the galactic plane using IceCube Observatory
- Implications of results

What are neutrinos

- Predicted to be the most abundant particle with mass in the universe
- Charge: neutral
- Rarely interact
- Three flavors
 - Muon (anti-muon)
 - Tau (anti-tau)
 - Electron (antielectron)

AGNs, SNRs, GRBs...

black

holes

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

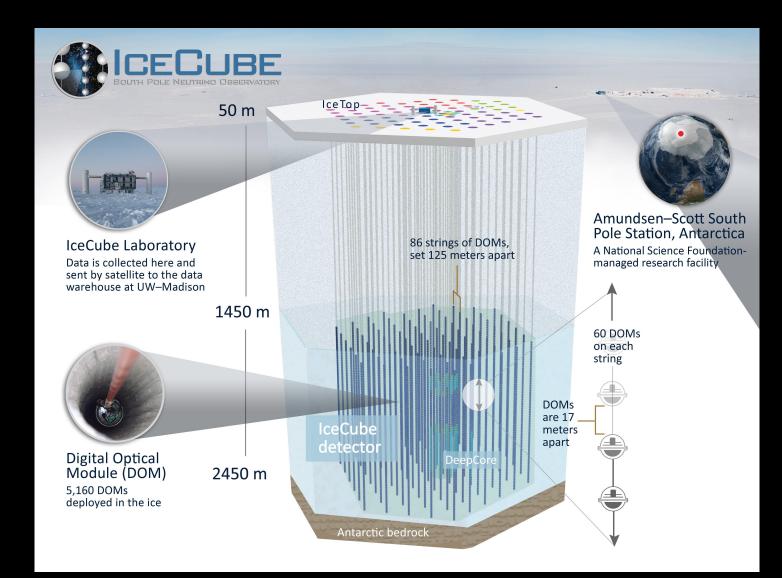
Neutrinos

р

They are weak, neutral particles that point to their sources and carry information from deep within their origins. Earth

*

air shower

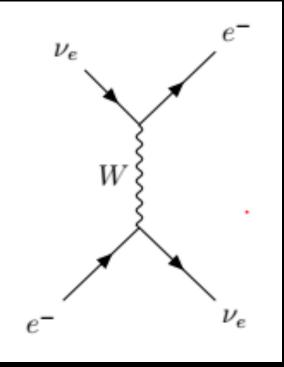

Cosmic rays

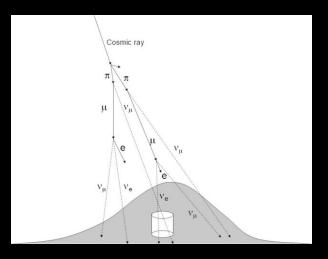
þ

They are charged particles and are deflected by magnetic fields.

What is Ice Cube

- Dimensions: 1 cubic kilometer
- Detects: Cherenkov radiation
- Composed of 5160 DOMs
- Full detector was completed in 2011
- Location: South Pole
- Energy sensitivity range: 300 TeV – 1 EeV

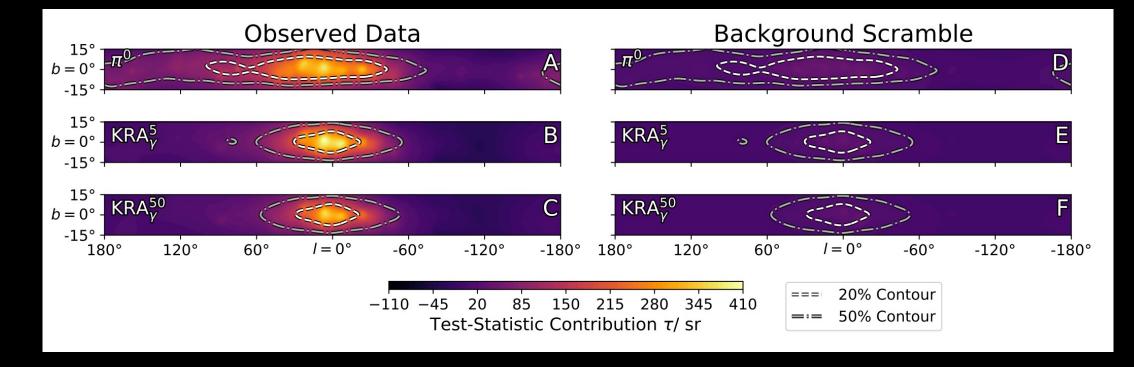

<u>A neutrino's travels and detection by</u> <u>IceCube Neutrino Observatory</u>


How IceCube works

- Measures Cherenkov Light
 of secondary particles
- Energy and direction reconstruction
- Light patterns categories
 - Track
 - Superior angular resolution
 - Cascade events
 - Superior energy resolution

Challenges of IceCube

- Astrophysical neutrino detection
 - Background domination
 - Atmospheric Neutrinos
 - Cosmic ray Muons
 - Background to signal ratio:
 - $10^8:1$


Deep Learning Techniques

- Used Deep Learning Convolutional Neural Network to perform event selection early in the event selection pipeline process.
- Utilized a Hybrid reconstruction method
 - Results
 - This method retains 20x as many events as previous selection methods of IceCube data for cascade-based Galactic plane analyses
 - 10^8: 1 ratio
 - Improved angular resolution by a factor of 2 at TeV energies

Galactic Plane Neutrino Search

- Three models of the Galactic diffuse neutrino emission were tested
 - π^0
 - KRA_{ν}^{5}
 - KRA_{γ}^{50}

Galactic Plane Test-statistic Contributions

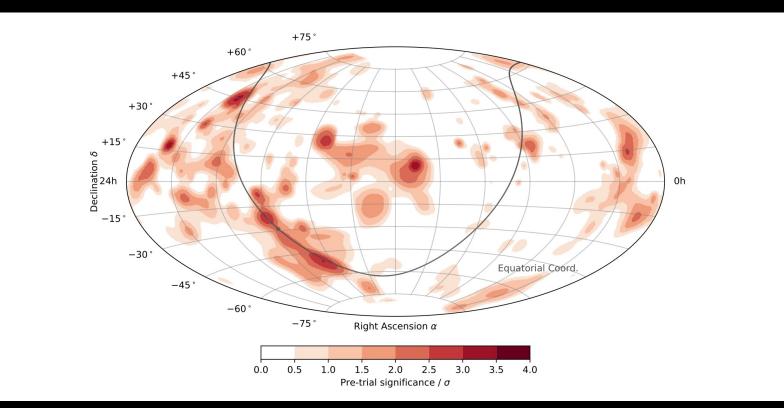
The contribution to the test-statistic τ is shown in galactic coordinates (longitude and latitude indicated by I and b, respectively) for each of the three tested Galactic plane models. The overall test-statistic value was obtained by integration over the sky. The contribution for the observed data (A-C) is compared to the con-tribution for a single randomly selected mock experiment using scrambled data (D-F)..

Summarized results of the neutrino emission searches

searched for correlated neutrino emission from three distinct catalogs of Galactic sources

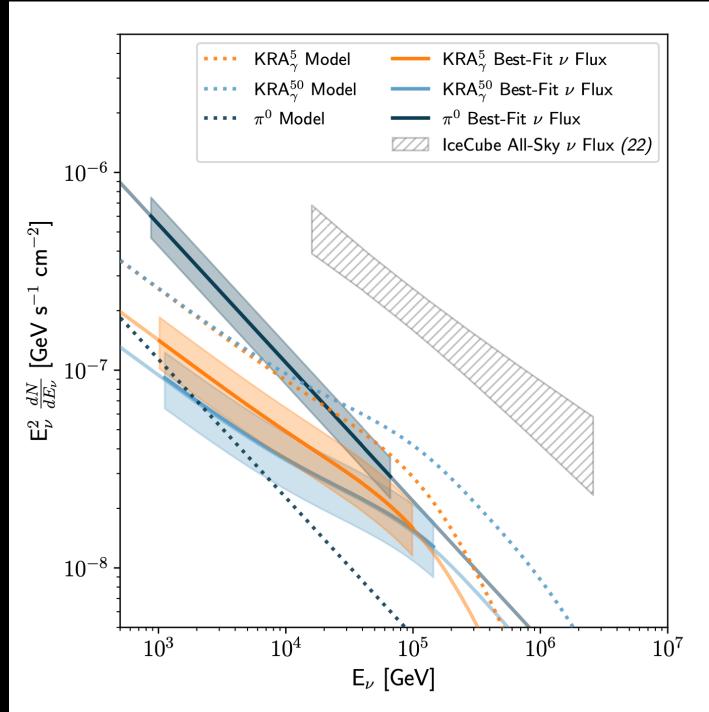
Diffuse Galactic plane analyses π^0 KRA^{5}_{γ} KRA

p-value 1.26×10^{-6} (4.71 σ) 6.13×10^{-6} (4.37 σ) 3.72×10^{-5} (3.96 σ)


Searches using catalogs of Galactic sources

- Conclusion:
 - we can not interpret these neutrino event excesses as a detection, as the objects in these Galactic source catalogs overlap spatially with regions predicting the largest neutrino fluxes in the Galactic plane diffuse emission searches.

Catalog stacking analyses	p-value
SNR	$5.90 \times 10^{-4} (3.24\sigma)^*$
PWN	$5.93 \times 10^{-4} (3.24\sigma)^*$
UNID	$3.39 \times 10^{-4} (3.40\sigma)^*$


All Sky Point Source Search

- The sky is divided into a grid of equal solid angle bins, spaced 0.45° apart
 - each point is tested as a neutrino point source

Energy Spectra for each of the Galactic plane models

Energy-scaled, sky-integrated, per-flavor neutrino flux as a function of neutrino energy (Ev) for each of the Galactic plane models. Dotted lines are the predicted values for the $\pi 0$ (dark blue), KRA5 γ (orange) and KRA50 (light blue) models while solid lines are our best-fitting flux normalizations from the γ IceCube data. Shaded regions indicate the 1 σ uncertainties, extending over the energy range that contributes to 90% of the significance.

Implications of Galactic Neutrinos

- These tests favor a neutrino signal from Galactic plane diffuse emission, but we do not have sufficient statistical power to differentiate between the tested emission models or identify embedded point sources.
- The neutrinos observed from the Galactic plane contribute to the all-sky astrophysical diffuse flux previously observed by IceCube
- The observed excess of neutrinos from the Galactic plane provides strong evidence that the Milky Way is a source of high-energy neutrinos