UHM Physics department colloquium

Search for solar neutrino and light dark matter with PandaX-4T

W. Ma et al. PhysRevLett.130.021802 S. Li et al. PhysRevLett. 130.261001

马文博 MA Wenbo wenboma@sjtu.edu.cn Shanghai Jiao Tong University

3:30pm, 2023 Sep 21, Room 112, Watanabe Hall, University of Hawai'i at Manoa

Personal profile

Wenbo Ma

- 2018-2024, phd, physics, Shanghai Jiao Tong University
- Looking for potential postdoc positions
- WIMP search of run0, PhysRevLett.127.261802, major author
- **Solar v search of run0**, PhysRevLett.130.021802, 1st author \bigcirc
- Fast recuperation system, 2022 JINST 17 T10008, 2nd author
- Rn220 calibration (PandaX-II), 2020 JINST 15 P12038, 1st author
- 2021 PandaX outstanding student first prize "WIMP search"
- 2022 PandaX outstanding student first prize "solar v search"
- 2022 SJTU national scholarship
- 2022 SJTU annual student nominated award

PandaX-4T cryogenics onsite responsible person, 630 days @ CJPL, 2019-2022

Cryogenics and circulation system, 2021 JINST 16 T06007, 3rd author

Dark matter

Dark matter: bed rock of modern astronomy

- Galactic rotation curve, gravitational lensing, bullet cluster, ... \bigcirc
- 0

Cosmic microwave background radiation, lambda cold dark matter model, ...

"The results showed us a universe in which just five per cent of its content is known matter. The rest, 95 per cent, is unknown dark matter and dark energy."

Does it takes 100(?) years to find dark matter?

- Toward a detectable dark matter
- Many models, many experiments, many fake discoveries \bigcirc
- \bigcirc

WIMP search with Xe: ruled-out a large parameter space in the recent decade

LZ@SURF

PandaX-4T@JinPing

© Elena Aprile, UCLA dark matter 2023

PandaX collaboration

Ongoing

PandaX-xT

China Jin Ping underground Laboratory (CJPL)

- Located at Sichuan province of China \bigcirc
- PandaX, CDEX, JUNA, …
- Blast and decorate more halls to accommodate future experiments \bigcirc

PandaX-4T experiment

- 0
- 1.2m × 1.2m time projection chamber

Giant detector maintanance system (cooling/purifying/shielding/data taking)

Hardware design

cathode/pmt/gate/cryogenics/vaccum/recuperation pillars

My phone album

Album from my phone: Jinping camp

mountain view from the camp

drive into tunnel

Album from my phone: cryogenics "gang of four"

fix electric infrustructure by ourselves

cryogenics group @ 2019

Album from my phone: 1st pillar

bare stainless steel platform

first pillar: cryogenics

Album from my phone: water tank cleaning

Album from my phone: sometimes when it rains

corridor between dorm and office

half basketball field

black cat outside the dorm

Album from my phone: the circulation

crane

leak checks

cooling bus and circulation

multi-layer heat insulating paper is covered for tubes

2019/

Album from my phone: "the six day" of cryogenics

from empty

to everything

Album from my phone: christmas 2019

Album from my phone: calibration devices

AmBe calibration tube

calibration mark: TPC P6

Album from my phone: corona virus, 2020/01 – 2020/04

nothing

Album from my phone: inner vessel, 2020/04

closure of the inner vessel

leak check

Album from my phone: check 6 tonne of xenon

Xe control system

8 modules × 16 cylinders, 50 kg / cylinder

Album from my phone: inner vessel

tighten screws

drove the crane to lift it down

Album from my phone: check electronics system

should be our first S2?

er	334A	350 MHz Oscille	oscope	2 GS/s		A. S. S.	
					1		
	Ready	= 100X	СНЭ		HELP	AUTO	🛃 UTILIT
			耦合			ADJUST	
			DC502			C	CURSORS MEA
			带宽			2	TRIC
MILLIT.	THE ALLER AND AND AND A		品			LEVEL PUSH - FIND LEVE	L
	a deserve de la serve a		探头			:0	SETUP AU
			自动			VE	RTICAL
25			反转				PUSH - ZERO OFFSI
103mV 5. 3mV 0. 0mV			美 开		-	0	:0
Puls	a AF (3)	DC	下一个			0	(mark)
00502 015 -71	DC1142 DC1142 B. OnVEnp ty	El#	(1/2)			3	V mi
tz 165	20k points	RTC:2020/05/04	09:31:42		CLOSE	4	(
-						Same and	See 1

Album from my phone: fill water

acrylic platform

Album from my phone: celebration

← 2020年6月14日 | 凉山彝族自治州 ◀

Werewolf is our favoraite party game

Album from my phone: fast recuperation

high pressure pump

heat compensation

Album from my phone: DD tunnel

PTFE lens

DD generator

PTFE into DD tunnel

WIMP search with PandaX-4T

Liquid xenon time projection chamber (TPC)

- Incoming particles scatter with Xe (electrons or nucleus, ER or NR)
- See light and delayed charge together under electric field
- Light is called signal-1(S1), charge is called signal-2(S2)

PandaX-4T TPC

- 169 PMTs on top, 199 PMTs on bottom
- 3.7 tonne liquid xenon in sensitive volume

Technical components: electrodes, shaping rings, PTFE wall, overflow chamber, Xe pipelines...

PandaX–4T commissioning run

- Stable data taking: 95 calendar days (86 days after selection) 0
- Excellent electron lifetime and voltage 0
- Data taking periods are seperated by hardware issues (voltage/circulation/sparking...) \bigcirc

Set	1	2	3	4	5
Duration (days)	1.95	13.25	5.53	35.58	36.51
$\langle \tau_e \rangle$ (µs)	800.4	939.2	833.6	1121.5	1288.2
$dt_{\rm max}$ (µs)	800	810	817	841	841
V_{cathode} (-kV)	20	18.6	18	16	16
V_{gate} (-kV)	4.9	4.9	5	5	5
PDE (%)	9.0 =	± 0.2		9.0 ± 0.2	
EEE (%)	90.2	± 5.4		92.6 ± 5.4	ŀ
SEG_b (PE/e)	3.8 =	± 0.1		4.6 ± 0.1	

Data selection and background

- 0.63 tonne-year exposure
- WIMP ROI: S1 2-135 PE \bigcirc
- 1058 candidates, 6 below NR mediam 0

Flat ER for Kr85, Rn222, 136Xe, solar v

WIMP searches

2020-2021: commissioning run, 95 days, 0.6 tonne-year 2021-2022: science run 1 after tritium removal, ~160 days

Phenomenological searches

Mono NR, L. Gu et al. PRL 129, 161803(2022)

Mono ER, D. Zhang et al. PRL 129, 161804(2022)

EFT operators, X. Ning et al Nature 618, 47-50(2023)

Table 1 | Comparison of electromagnetic properties

	dark matter	neutrino	neutron
Charge radius (fm ²)	<1.9×10 ⁻¹⁰	[-2.1,3.3]×10 ^{-6*}	-0.1155 *
Millicharge (e)	<2.6×10 ⁻¹¹	<4 ×10 ⁻³⁵ *	(-2 ± 8)×10 ^{-22*}
Magnetic dipole (µ _B)	<4.8×10 ⁻¹⁰	<2.8×10 ⁻¹¹ *	-1×10 ^{-3*}
Electric dipole (ecm)	<1.2×10 ⁻²³	<2×10 ⁻²¹ [†]	<1.8×10 ^{-26*}
Anapole (cm ²)	<1.6×10 ⁻³³	~10 ^{-34 ‡}	~10 ^{-28 §}

Solar B8 neutrino CEvNS search

Xe TPCs as a neutrino detector

Xe TPCs have sensivity at MeV with various channels

meV eV

> Artificial radioactive sources

The Sun

The atmosphere (cosmic rays)

TeV

Nuclear reactors

GeV

Accelerators

© Kate Scholberg Zurich Physics Colloquium 2022

Solar neutrino

- solar fussion neutrino
- interact through CEvNS (coherent elastic neutrino-nucleus scattering)
- deposits several keVnr in LXe

Neutrino floor/fog

- Discovery of solar v CEvNS in a few years?

Neutrino floor/fog: neutrino ultimately constrain the parameter space of deep-underground detectors Will be firstly encountered by tonne-scale Xe detectors: LZ, XENONnT, PandaX-4T

Pushing threshold

- 2 or 3 hits among the entrie PMT array(169+199 PMTs)
- 65 PE of S2 (~3 electron)
- \bigcirc

Improvement on deadtime monitoring, signal reconstruction, and quality cuts

Waveform simulation

- Precise calculation for detection efficiency at each energy bin \bigcirc
- Detector-specified simulation for S1, S2, delay ionization, dark noise, etc with data-driven method 0
- Integrated with the real \bigcirc

Waveform simulation

- 0
- Reweighted, and consistent with low-energy neutron calibration 0
- Prediction for B8 is taken as nominal \bigcirc

Consistent with data on S1/S2 width, pattern, RMS, and other complicated variables

LXe light and charge yield uncertainty

- Nominal value fitted from WIMP 2021
- Uncertainty band from other experiments (NEST v2.3.6)
- Convert to counting uncertainty

Light and charge yield band

)21 'iments (NEST v2.3.6)

Uncorrelated analysis

Expected 2-Photon Events

.714	0.761	0.807	0.837	0.87	0.903	0.966	1.027	1.102
.814	0.905	0.945	0.992	1.011	1.08	1.102	1.166	1.216
.952	1.044	1.054	1.085	1.134	1.207	1.245	1.261	1.395
.067	1.143	1.155	1.206	1.244	1.269	1.341	1.407	1.504
.149	1.279	1.277	1.361	1.377	1.447	1.464	1.533	1.599
.315	1.376	1.416	1.486	1.508	1.562	1.6	1.682	1.725
.398	1.469	1.572	1.621	1.66	1.683	1.756	1.807	1.9
.561	1.651	1.777	1.795	1.85	1.901	1.931	1.98	2.084
.768 	1.913 	1.963 	2.014	2.077	2.172 	2.209 I	2.306 	2.433
0.1	0.2	0.3	0.4 Ly	0.5 / media	0.6 an	0.7	0.8	0.9

Expected 3-Photon Events

		0.1	0.2	0.3	0.4 Lv	0.5 / media	0.6 an	0.7	0.8	0.9
	0.1	0 .456	0.446	0.462	0.488	0.51	0.489	0.502	0.51	0.519
	0.2	0 .361	0.377	0.404	0.405	0.413	0.406	0.404	0.44	0.421
	0.3	0 .311	0.321	0.333	0.339	0.328	0.353	0.35	0.377	0.363
Ú.	0.4	0 .266	0.28	0.285	0.303	0.291	0.307	0.328	0.319	0.332
v med	0.5	0 .237	0.243	0.259	0.25	0.27	0.283	0.294	0.271	0.296
an	0.6	0 .205	0.219	0.227	0.234	0.235	0.243	0.248	0.265	0.273
	0.7	0 .169	0.172	0.191	0.201	0.199	0.217	0.215	0.229	0.238
	0.8	-0 .152	0.163	0.163	0.166	0.181	0.187	0.205	0.204	0.215
	0.9	0 .115	0.125	0.132	0.14	0.149	0.162	0.168	0.16	0.188

Particle 4 GeV WIN B8 8 GeV WIN

Counting uncertainty

	2-hit	3-hit
	uncertainty	uncertainty
MP	0.45	0.60
	0.29	0.39
MP	0.16	0.24

Background budget

- ER: LXe ER/NR discrimination
- NR: Different recoil energy spectrum
- Surface radioactivity: under control with the fiducial volume
- Accidental coincidence background is the real challenge

Two-hit channel S2 charge spectrum

Surface	Accidental coincidence	B8
0.14	62.43	2.32
0.08	0.79	0.42

Accidental background

- \sim Lower threshold \rightarrow increase background
- Rate estimation + sample from data \rightarrow prediction
- Check sideband prediction vs data, determine uncertainty

$$N_{\rm AC} = \epsilon_{\rm cut} R_{S1} R_{S2} T_{\rm drift}$$

- livetime Abdusalam Abdukerim et al 2022 Chinese Phys. C 46 103001

- R(S1): 6 kHz, picked from 1-ms-randomly-selected waveforms \bigcirc
- R(S2): ~ 1000 per day, are selected from 0.9-1.5ms offwindow \bigcirc
- Drift window: 760us \bigcirc
- Livetime: 64 days after more stringent deadtime cut \bigcirc

Sideband result

Number of Photons	Physical Events	Accidental Events	Total Prediction	Data
1	9.4	2060.5	2069.9	2043
2	10.1	33.8	43.9	47
3	6.9	2.2	9.1	7

Boosted decision tree

- O: close to background; 1: close to signal
- \bigcirc (potential high-dimension correlations observed)

Two photon prediction

62.43

Three photon prediction

Boosted decision tree (BDT): put tens of variables into a single value within 0 to 1

Input variables: related to charge, width, top-bottom asymmetry and PMT top pattern of S1 and S2s

1.42

Unblinding procedure

- Optimize the BDT value together with S2 range (PE)
- Cross check with sideband at first
- Apply BDT on real data

N _{hit}	S2 range (PE)	BDT	ER	NR	Surface	AC	Total prediction	⁸ B	Observation
2	65–230	pre post	0.04 0.02	0.10 0.04	0.14 0.03	62.43 1.41	62.71 1.50	2.32 1.42	59 1
3	65–190	pre post	0.01 0.00	0.05 0.02	0.08 0.03	0.79 0.02	0.93 0.07	0.42 0.29	2 0

Unblinding data: a well-prepared null result (a)

- Just one event was found
- 1-sigma downward fluctuation \bigcirc

Apply-BDT result						
N-hit	Total bkg	B8	Data			
2	1.50	1.42	1			
3	0.07	0.29	0			

Statistical interpretation

Profile likelihood with two bins: 2-hit, 3-hit The data is translate to solar neutrino or WIMP seperately

Likelihood function with constriain terms

$$\mathcal{L} = G(\delta_{\epsilon})G(\delta_{s})G(\delta_{b})G(\delta_{\Phi})
onumber \ imes \left[\prod_{i}G(\delta^{i}_{ ext{BDT},s})G(\delta^{i}_{ ext{BDT},b})
ight]$$

$$egin{aligned} & \mathcal{V}_{i} & (1+\delta_{\epsilon})(1+\delta_{ ext{BDT},s}^{i}) \ & \delta_{b})(1+\delta_{\epsilon})(1+\delta_{\epsilon}^{i})(1+\delta_{ ext{BDT},b}^{i})+N_{ ext{other}}, \ & \mathcal{V}_{i})(1+\delta_{\epsilon})(1+\delta_{ ext{BDT},s}^{i}) \ & \delta_{b}f_{i}^{
u})(1+\delta_{\epsilon})(1+\delta_{ ext{BDT},s}^{i})(1+\delta_{\Phi}) \ & \delta_{b})(1+\delta_{\epsilon})(1+\delta_{ ext{BDT},b}^{i})+N_{ ext{other}}, \end{aligned}$$

linties	2-hit bin	3-hit bin
cuts	0.14	0.14
arge yield	0.29	0.39
al bkg	0.30	0.30
or signal	0.14	0.13
for bkg	0.19	0.18
lux (SNO)	0.04	0.04

Final Constraints

Leading constraints on solar B8 CEvNS and 3-9 GeV WIMP

S2–only analysis and constraints

Use consistent dataset and techniques, perform analysis on S2-only channel

S2–only analysis and constraints

- Better DM-n and DM-e constraints at low-mass region

Use consistent dataset and techniques, perform analysis on S2-only channel

PandaX–xT in the future

- Next generation liquid xenon experiment
- >30 tonne sensitive volume
- Decisive test on WIMP with 200 tonne-year

Summary

PandaX-4T is pushing limits on WIMP and solar B8 v CEvNS. Robust hardware design enables stable data taking. A comprehensive waveform simulation guarantees the reliability of the s/b discrimination.

Backup

Complete analysis chain

- Low-level detector response is crucial for searching 8B \bigcirc
- Discriminate physical events out of noise \bigcirc
- Cuts suppress background \bigcirc
- \bigcirc

Deadtime Effect

- ~ 3% Bad data files with excessive noise
- 7 live days with excessive micro-discharge
- High-charge period induced by tail of large signals

Unblinded event

N _{hit}	S2 range (PE)	BDT	ER	NR	Surface	AC	Total prediction
2	65–230	pre post	0.04 0.02	0.10 0.04	0.14 0.03	62.43 1.41	62.71 1.50
3	65–190	pre post	0.01 0.00	0.05 0.02	0.08 0.03	0.79 0.02	0.93 0.07

_

Physical background

