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Dark Matter: Evidence

(c) Baryons (d) Matter

] Dark Matter
) Gravitational Evidence
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Dark Matter: What We Know

3 DM should be cold ‘

4 SU(3)XU(1)gy, Neutral

(1) Cold Dark Matter _ (2) Electrically Neutral

O Stable Tom > +

dark-parity = +1 dark-parity = -1

(4) Stable



Light Fermionic Dark Matter: Tremaine Gunn Bound

O Pauli-Exclusion Principle
[ No two fermions can occupy same energy state

( How many fermions can occupy a volume V?
1 Pauli-Exclusion limits two per energy state (spin)
3D infinite square well, count states

Number of

_h_QV2¢ = B k;, = %?’LZ states




Light Fermionic Dark Matter: Tremaine Gunn Bound

. Galaxy is a sphere
U full of fermions
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Light Fermionic Dark Matter: Tremaine Gunn Bound

O Pauli-Exclusion Principle
[ No two fermions can occupy same energy state

( How many fermions can occupy a volume V?

1 What does this say for a galaxy Variance of
velocity
. Galaxy Size 1 = 2 3 3
~ O T ~ P ~ ' M O 3.4 3
My = °g N~ -~ =% Mpyrax = mN =~ —pz>—

Number of particles

) Maximum mass in galaxy
for a given momentum

Virial Theorem Mass

d Minimum dark matter mass My, > My ax




Light Bosonic Dark Matter

(d Count the number of states for a boson
 Basically, the same but can have oo particles per state

No lower bound on mass




Light Bosonic Dark Matter

(d Count the number of states for a boson
1 Basically the same, but can have oo particle per state

(J Can there be a lower bound on the mass?



Ultralight Bosonic Dark Matter

(d Count the number of states for a boson
1 Basically the same, but can have oo particle per state

(J Can there be a lower bound on the mass?
(J ULBD must be a condensate on “small” scales
(J Condensate must be smaller than galaxy

’




Ultralight Bosonic Dark Matter

(J Count the number of states for a boson
(1 Basically the same, but can have co part]

o
d Can there be a lower bound on t& (QQ
J ULBD must be a conde ales

(] Condensate must
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Why Are Bosons Special?

(J Bosons can occupy the same energy state

1 s :
k), n(ka), ...y = [[{ —————————a’(k, n(ko}o n
n(ky), n(ka), . .) {(27‘_)32(%[”(161)+ Ll G 10) a(k)™ # 0

i

[ In a background a decay process becomes

(0, ko, k3| Ap3pap1|k1,0,0)  —  (n(k1),n(k2) + 1,n(ks) + 1Ap3ad1|n(k1) + 1, n(k2), n(ks3))

d Giving an enhancement

<n(k1)’¢z = (n(k%) + 1|\/n(kz) + 1 For n(k;) 2 1 naively

decays enhanced



Why Are Bosons Special?

J Bosons can occupy the same energy state

kyon(ksy. . S =T L
Inka). (k). - ) U{(Zw)32a)kl[n(k,-)+ 1712

1 [a*(ki>1"<kf>}\0> a(k)™ # 0

1 In a background a decay process becomes
 Giving an enhancement
1 Where is the enhancement from?

There 1 one
way
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Why Are Bosons Special?

J Bosons can occupy the same state

1 5 :
ki), n(ksy),...) = —_— a (& ”(l“)}O k)™ 0
nk), n(ka), ) H{<zw)3zwk,[n<k,->+u“ (@' ()" 0) a(k)" #

i

[ In a background a decay process becomes
J What happens to the propagator?

Can be
T T significantly
0[¢T¢l0)  —  (n|oTo[n) x 53(k — k') S
 Background provides an additional piece
x nd>(k — k')

Nobackgrownd (0la(k)al (K')[0) = (0] [a(k). a’ (k)] I2)



Why Are Bosons Special?

J Bosons can occupy the same state

kyon(ksy. . S =T L
Inke). (k). - -) U{(Zw)32a)kl[n(k,-)+ 1712

1 [a*(k»]"(kf)}\m a(k)" # 0

[ In a background a decay process becomes
J What happens to the propagator?

(0l6T0l0) = (n|¢T¢In)

 Background provides an additional piece

Same as time ordered thermal
propagator in real time formulation.

G(k) = L — 2mn(k)6(k* — m?)

k2 —m?24ie




Why Are Bosons Special?

(1 Bosons can occupy the same state

S\ |
e >

‘e“ R
n(ky), n(ky),...) = H{ T L QQ ) (g@
A In a background a dg C‘:” &% > @\k%

N ) \ @\ 4
d What happen @ = @ 4
Q@@ \‘@‘\X
%\\\ j lonal piece

\
A e“\\\@

)

Same as time ordered thermal
propagator in real time formulation.

2mn (k)6 (k? — m?)




Production of Ultralight Dark Photon Dark Matter

d Thermal production not possible
(d Dark Matter tends to be hot

Tovp ~ 1073 eV m% < 1




Production of Ultralight Dark Photon Dark Matter

(1 Thermal production out

1 Production of longitudinal modes from quantum fluctuations
[ longitudinal mode behaves like scalar field
AL ~ auﬂ'

a*d®k 1 k2

Somg “k, dt = (10| — S| = / add®z dt

1/, o 1 o o\
— = — | (dym)” — _,| FE |
J (2m) 3 2 = 200 a2

1 Choose the Bunch-Davies vacuum we get

Pa, = (£)" P~ (34)°

2Tm

Graham, Mardon, Rajendran



Production of Ultralight Dark Photon Dark Matter

(1 Thermal production out

1 Production of longitudinal modes from quantum fluctuations
[ longitudinal mode behaves like scalar field
1 Choose the Bunch-Davies vacuum we get
J Power spectrum suppressed at low momentum
] Relation between inflation scale and mass for dark matter

dfvector / T HJ{
'-:“Ea::--'lm B ’\' 6 x 10-6eV ( 1014 GeV ) I

However, can still place
_ Y/ -7 a strong constraint!!
Mpar ~~ ].O 20 eV y —yector ~, 1() 5




Production of Ultralight Dark Photon Dark Matter

(1 Thermal production out
1 Production of longitudinal modes from quantum fluctuations

1 Production from inflaton induced tachyonic DP mass -
Kitajima and Nakayama

() 1 1

L=

 Equations of motion
Tachyonic Mass

(@ +4)(a —2)




Production of Ultralight Dark Photon Dark Matter

1 Thermal production out
 Production of longitudinal modes from quantum fluctuations
1 Production from inflaton induced tachyonic DP mass

¥ 0 \\:-.u : .-_e.é" Y
1020 1075 102 1075 1070 105
mp / eV

-
1020 1015 1010 10°®
mp / eV




What happens for decays?

J Two body decays
 Coupling hard to realize

Mypy > My

%
V1 / Y1

V2




What happens for decays?

J Two body decays
 Coupling hard to realize

Makes it hard to keep ¢ light




What happens for decays?

J Two body decays
 Three body decays
[ Many possibilities!!

O Z decays well measured e
d Small enhancement
detectable
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O Z decays well measured e
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7 momentum goes to zero

O IR divergences must cancel




What happens for decays?

J Two body decays
 Three body decays
[ Many possibilities!!

O Z decays well measured e
O Small enhancement
detectable
————— 1) O Propagator on shell when @
7 momentum goes to zero

O IR divergences must cancel

Effectively
Bremsstrahlung




What happens for decays?

J Two body decays
 Three body decays
[ Many possibilities!!
IR divergences in finite temperature

[ Have to include wavefunction renormalization
L Power Divergent IR

singularity
L Shows up in decay too

Yp D gz la(k)(y -k —me) Ta(k) =87 [ %n(Eq) lim, o n(Ey) ~

Q|-




What happens for decays?

1 Two body decays
1 Three body decays
d Many possibilities!!
J Example: Higgs Decay in Thermal Bath
2




What happens for decays?

1 Two body decays
1 Three body decays
d Many possibilities!!
J Example: Higgs Decay in Thermal Bath
2

Correction to
this decay

[ Vertex Corrections
O Background
~y
enhanced
O Same for £ — 0



What happens for decays?

1 Two body decays
1 Three body decays
d Many possibilities!!
J Example: Higgs Decay in Thermal Bath
2

h O Stimulated
"""" Emission/Absorption
0 Background enhanced



What happens for decays?

1 Two body decays
1 Three body decays
( Many possibilities!! O Enhancement completely cancels at 1-loop

. . Donoghue, Holstein (1983)
J Example: Higgs Decay in Thermal Bath
> Lr—o(h — ete ) =Trzo(h — eTe ) + O(T?)
Bremsstrahlung [ Cancellation of IR divergences expectzd

cancelations

nk(k) ~

=

dr ' ,
’)/ dk '_.F'..Rl:.:'_] %R_|+Rr_| .kR|+ﬂ':.!:":|

-------- [ Finite piece goes as

[ dkRy (kn(k)) ~ [ dkRyk°




What happens for decays?

1 Two body decays

1 Three body decays
( Many possibilities!! O Enhancement completely cancels at 1-loop
J Example: Higgs Decay in Thermal Bath

> Lr—o(h — ete ) =Trzo(h — eTe ) + O(T?)

L Cancellation of IR divergences expectzd

dT In
|.H|. IR_|+RD *.R

=ngik)

O Not IR divergent, why does it cancel?

This vanishing appears to be accidental, but we have also
calculated the radiative corrections for the decay of a

paeudoscalar H (instead of scalar) and found that to be
zero also.




What happens to loop processes?

J What will give us the most “bang for our buck”?
U First generation particles in loop (Denominator then mgad,um%M )

k
Enhancement comes J dkg-ni(EBg) ~ 252 — s
from term like




What happens to loop processes?

J What will give us the most “bang for our buck”?
 First generation particles in loop (Denominator then mgad,um%M )

 Precision measurement, more sensitive to everything




What happens to loop processes?

J What will give us the most “bang for our buck”?
[ First generation particles in loop (Denominator then ‘mg,d’um%M )
[ Precision measurement, more sensitive to everything

d g — 2 of electron perfect

1 Plan
[ Calculate g — 2 of the electron

1 Show that charge is not
renormalized in background



Wave Function Renormalization

[ Start with wave function renormalization

S = B(k) + C(k) (v -k —m,) + - D(k)

J New type of contribution
 Violates Lorentz symmetry
(1 Can’t be combined to C(k) or B(k)

dq q
DH(k) = —2e°y? i E (g% —
(k) = =22 [ o —n(B)6(e® — mpw)
dq m
B(k) = 2€° 2/ = E)d(q? —
(k) X | @y q2+2q-k+k2—mgn( ¢)0(¢” —mpur)
d4q 1 Do no specify n(E,) until end

— n(Eq)0(¢> —mpu)




Wave Function Renormalization

[ Start with wave function renormalization

S = B(k) + C(k) (v -k —m,) + - D(k)

J New type of contribution
 Violates Lorentz symmetry
Lorentz [ Can’t be combined to C(k) or B(k)

violating

d*q a
2m)3 2 +2q -k + k* —m

D" (k) = 262)(2/(

57(Eq)d(q° — mpar)

dq m
B(k) = 2¢€” 2/ c E,)(q* —
( ) € X (27T)3 q2+2qk+k2_mgn( q) (q mDM)
d4q 1 Do no specify n(E,) until end
C(k) — —262X2 o 3 5 19 2 n k2 " mzn(Eq)(S(Cf — mDM)




What happens to loop processes?

[ Start with wave function renormalization

Sn = B(k) + C(k) (v -k —me) + - D(k)

J New type of contribution
 Violates Lorentz symmetry
(1 Can’t be combined to C(k) or B(k)

1 Use a background dependent spinor
[y -k —m— 2 (v D(k) + B(k))] ¢ = 0

 So that we have “mass counterterms” .
Not a real counterterm, just

44




What happens to loop processes?

[ Self energy plus counterterm contribution

. = 1 OB(k) Ok, D" (k) 0
LJ\JSE—FCT ; LBU(k)’hL C(k) - E—k e aEk k2=m2 aEk k2=m?2 P (k)
_ 1 OB (k) Ok, D" (k) _

k) + — |m. = — D%k k
+ C(k) + B Me 9B, |, 0Fr |, (k)| | u(k)

(] Derivatives arise because of definition

d*q q \
D“k:222/ r_ n(Fy)8(q* —
) ©X (2m)3 q2+2q-k—|—k3m§n( 0)0(q” —mpwm)

d4q m
: n(E,)0(q? —
27)3 q2+29'k+k2—m§n( ¢)0(q” —mpn)
d'q 1
(27)3 g2 +2q - k 4 k2 — m?

B(k) = 262)(2/(
Ck) = —2¢22 /

n(Eq)0(q> — mpu)

Mass counterterms on shell,



Wave Function Renormalization in a Background

O Thermally corrected propagator k m
STHk) =v-k—mp+2E, = 1+C(k) v-[k+ D(k)|— 1+C(k) [mr — B(k)] Xn =B(k)+C(k) (v -k —mg)+~- D(k)
J Renormalized propagator Wene FUEen
O Perform kg integral Renormalization
. 1 it~ odm)e "tk (z—y)
[/ f (gﬂ’)z Z2 (fY-«Z—I_ﬂ}): : Residue changed
k__m e if B(k), k,D"(k) depend on K SeeleEuig
O Compare to calculation of (1)) dependent spinors
(2m)® [0 9F RY> J e 2E

L Wave function renormalization changed by background

s e




What happens to loop processes?

[ Total Vertex correction

?:MTOTM — _Zeﬁn(]%) |:7pb |:1 ‘

11 d 1 D°(k)
———— (m.B(k) + k,D" (k =
2B aE "B+ RDIR) 57 J

{1 d {B(k)+ k,,DV(k)} ~ D*(k)

+ 5% me 2me
N [’Ya,’g;]n; dl;;i’f) + (k& ]})} 4 FM(AI{)} un (k) Wﬂé

Fu(Ak)
d4Hq 2 ('}/ q + me) [7 : 77#] » 47# ‘ qa]
(27)3 (g2 + 2¢,k)* ’

"




Charge Non-Renormalization

1 Charge non-renormalization
d Apply Ak =0, u = 0 to vertex

iMror, = —ietin(E) [% [1

i 5 0B + k0 0) +3 T 4 o )
| 1 d k,D"(k)|  D*(k)
i, [P0 ]

a Yol Ake dDV (K
+h Vo] ( )Jr
8Me dk,,



Charge Non-Renormalization

1 Charge non-renormalization
d Apply Ak =0, u = 0 to vertex

i Mrot, | ap—o = —i€tin (k) {70 {1

- 2w+ [% (B(k) + ’“”i(k)) +M” (k)

Cancels Due to Gordon
Decomposition for Ak = 0

i Mror, | ap—o = —te



Ward ldentities

J Ward Identities apply Ak* to MTOTM

1 Use slightly different form of Mror,
Ak=Fk—k

iMror, = —iein(k) |7, |1

_%%% (meB(k) + k, D" (k) +% D(Ek) + (k ¢ ’_f)]
+ [ By + 0] B
Come From Gordon - %

Decomposing




Ward ldentities

J Ward Identities apply Ak* to MTOTM
1 Use slightly different form of Mror,

— B(k) — B(E)+7 - D(k) 7 - D(F)

iAR Mror, = —ietn(k) |7 Ak [1
11 d 1 DO(k) ]

—5 5 gg (MeBk) + k. D(k)) +5—F

AKH Efy [%D(k) + %D(%)l

d d -
—_— —— M
+- LBk + dkﬂB(k)] + Ak Fuwc)] tn ()
This row of order «




Ward ldentities

1 Ward Identities apply Ak* to Mror,
1 Use slightly different form of Mror,
3 Generically true to order AL3
Ak =k —k
A3
Ak“MTOT“ = —eﬂn(l%)

X [B(k) — B(k) + Ak {dféf) - dfk(f)}

+w [D”(k) — D" (k) + Ak* [d?i;ik) + dl?ikfk)m un (k)

AV




Background Contribution to g-2

1 Simplified Total Vertex correction A
A(k) =e*x? [ g 2me

) @) 2a-k)?
| e 1 [DO(k) Do(k)]
b, = ) [7“[ i [ B | B ~ qu% N(Eq)lig ~ 3
_ R . -
~RETo(k) — RS I (k) — A’fvf”“f)] _ !
gk(k) D (gk . L(k) = e*x* | d27?)3 42(1;@3
- 22% - 2l;ne R LK) + L)

~ quN(Eq)
+[1v— Bt bu g gy 4o v I(k)dY ;

9.9 rd'ly ququ
x ha,%]Aka] Liv =X | Gok dh)

~ [ dqqN (E,)




Relativistic Hamiltonian

1 Magnetic Field (Approximate Penning trap)

determines

K = Other components size of effect

0 _ _ L
A" =0 A= 2B XT suppressed by 5% ,,

2
0 Momentum Integrals (% < 1)

2 _ 3 €22
RIA(k) = gg;g (gk) RIy(k) = g”n’;: ("gk) om,, = (%)3 e — fd3

[ Relativistic Hamiltonian
] Must use corrections to frequencies and compare to experiment

)

—




Relativistic Hamiltonian

1 Magnetic Field (Approximate Penning trap)

determines
size of effect

—

AOZO A:%EXT

Other components
suppressed by 5% ,,

2
0 Momentum Integrals (% < 1)

2 _ 3 €22
RIA(k) = gg;g (gk) RIy(k) = g”n’;: ("gk) om,, = (%)3 e — fd3

[ Relativistic Hamiltonian
(J Must use corrections to frequencies and compare to experiment

- 70
HT — EB — E [L B+ G R‘ [1 - 2R I -1 (k):| O Cyclotron Frequency

S
Spin
frequency '

corrections



Experimental Constraints

[ Predicted spin and cyclotron frequencies

~ 0M,,
B 2RMe — . |
wo = A8 [1 e 7o (k)
sM O(e) 2Fg Ej,
prediction o E. L 2\
Wl = We [1 + " 4R (( — %) I°(k) + QIA(k)Ek)]
2T Mg ms
Background
J Measured quantity ratio T corrections small
A
r \
Wq Ws ] — We 5(4)(1 6&)0
Bapsss S 2Rfo[lJr — ]
wc wc wao wCO




Experimental Constraints

 Number density of dark matter Three

__ 1 ppwm polarizations
nDM - 3 mp M

N — L _MDM Assumes DM velocity
3 4rd"8a d small
(27)3 Spread sma Enhanced by mass
O Integrate occupation number squared
3 = - 3 ppum  (2m)° _ (2n)’ppm __ 4w 2 _ pPDM _
fd qn(EQ) — fd quM 12wq2Aq — 3mpym 5mn 3 ax meszM

d The variation in R is then




Experimental Constraints

%)
=1

a
in

BWa ~ 44 x 10712

a

& in

&n
=

=]
—
P L
=
i
=
L |

-
in —

]

_________?.d"f’____________:

100 120
cycloron frequency (GHz)

Fan, Xing. 2022. An Improved Measurement of the Electron Magnetic Moment.
Doctoral dissertation, Harvard University Graduate School of Arts and Sciences.

40 &0
relative cyclotron power



Experimental Constraints

O Experimental uncertainties
 The experimental constraints on R

Correction to
Theoretical
prediction of ratio

Ry | Sdwg (2m)2 9 PDM
Rpy — Wag 3 X mZ  E?

ARy

~ _ Awc
RfO e

UJCO

< 284 ~ 4 x 1071

C

Dominant
measurement error
on ratio




Experimental Constraints

O Experimental uncertainties
U The experimental constraints on R ¢
1 Theory<Experiment (Measured g-2 very consistent with SM)

Being

@ P KQ)DM > < 2% ~ /4 % 10—11 Conservative
3 mDMEk We

[ Gives a constraint on X for a given mpas

1/2

3mpm Qa




Experimental Constraints

1 Experimental uncertainties
1 The experimental constraints on R F; Being Previous onstaits from Caputa,

Conservative

ARy | Sw, ., (2m)° 9 ppwm Awe ~, —11
Ry = way 8 X mbog Bl < 2w X4X10
U Gives a constraint on X for a given mpu -

10
. . 10”7
1 Very strong compared to previous constraints 108
109
= 10-10
10711 [¢
10-12
10-13
10714

10-15

10716

10-17
10-2910-1810-1610"1M10°1210°1210"8 10° 10 102 10°

mppm eV



Experimental Constraints

J Experimental uncertainties
[ The experimental constraints on R F; Being Previous onstaits from Caputa,

Conservative

ARy | Sw, ., (2m)° 9 ppwm Awe ~, —11
Rro = ey 8 X BT <2, =4X10

1 Gives a constraint on X for a given mps
1 Very strong compared to previous constraints

1 Constraints scale as % power of DM density

Qi iﬂ_lo

102910-1810-1610"110-1210°1210"8 10°° 10* 102 10°

mpm eV



ALP Background Dark Matter

1 ALP background is another motivated light background dark matter
 Also contributes to the anomalous magnetic moment

O Experimental constraints on its contribution

2 N
ARy ow 1 (2m) (9 m ) k> PDM —12
= ~ % ~ 2 ac Ve < 0.7 x 10
Erme. mQDMmz

[ For light ALP constraint quite strong
 Other coupling constraints slightly weaker



Conclusions

[ Fundamental properties of dark matter can lead to constraints

 Pauli exclusion principle prevents ultralight fermionic dark matter

1 Compton wavelength prevents super-ultralight dark matter bosons
1 Production of ultralight dark matter

 Thermal production problematic

(1 Coherent condense production needed
 Ultralight dark matter is very dense throughout the universe

[ Occupation number becomes very large

 Number of paths for processes shoots way up (Bose Enhancement)
(1 Bose enhancements work on loop processes

( Anomalous magnetic contribution greatly enhanced

J Strong constrains gauge mixing parameter for dark photon




100 150
(' - 137. 035 999 000) x10°

1 Weighted average very close to 2022 measurement (~164)
[ Also close to theory prediction

1 Allows us to call any deviation larger than experimental error a measurement




Can we treat the dark photon as a particle?

(J Dark matter condensate has very long period

T ~ 27 ~ 18 hrs (10_20 eV)

mpmM D M

(] Decoherence time of condensate
 Virilization from gravity on large object
AB?

™mp M

Tdec ™

 Can experiments resolve this as a particle?
1 Heisenberg uncertainty principle

AEAt > 5 At > 5—

2Mmp pM

termination.



What does this mean for Decays?

1 Two body decays
1 Three body decays
d Many possibilities!!
J Higgs Decay in Thermal Bath
e




Ward ldentities

] Ward Identities

Ak3
Ak'uMTOT,u, = —eﬂ,n(E)
i - dB(k) dB(k)] 4
B(k) — B(k) + AkH - m
< B0k~ B(R) + Aw |54 970 DM
+k,u +k, AkH

[D/L(k) - D”(l%)} -

2M.. 2Me

[Dyu(k) + Dy (k)]

. Hdpv(k) . de(k')] AR+ Dy (k) — D’/(:)] INE:

dk,, déﬂ
[Ya> V0] A’fa]
U

dme.

X n(k) .




Production of Ultralight Dark Photon Dark Matter

(1 Thermal production out

1 Production of longitudinal modes from quantum fluctuations
[ longitudinal mode behaves like scalar field
1 Choose the Bunch-Davies vacuum we get
J Power spectrum suppressed at low momentum




The Penning Trap

 The Penning Trap
d Constant magnetic Field/Quadrapole Electric Field

E field just to
contain particle

Electron effectively
orbits in constant B field

[ Clearly not cavity since electric field non-zero inside



Cavity Effects

 If the experiment were in a Cavity, this effect would cancel
1 The cavity would produce an identical background of photons
(J Except opposition spin vector

M This introduces additional enhanced propagators
(n, n'|Au(@) Ay (y)|n, n') (n, n'|Ap(x)Apu(y)|n, n')

Cavity Generated
n(Ey) = xn'(Ex)

[ This then leads to a total propagator of Negative: Spin sum
has negative sign

D, 1|45 (2) AL () I, 1) + 2x(n, | A (@) AL (W)l 1) +(n, | Ay () Ay (y) |, )] = 0



Is there an enhancement in the classical limit

Because massive, this
is not the same

Need opposite
correlated momentum

d However, there is a very strong field because so light

PD M




Why is inverse scaling of dark matter mass ok?

_ 2.2 d'ly 2m.
I4(k) = X° [ @mt Gats?
O The integrands is expanded in k so R, N(E
depends on k only through ny (E}) ~ f dq(T‘l) N(Eq)

—R_ |+ Ry +E + ok — d4H 4q 3
ptme
I _6 X f 271')3 (2q-k)3
Q kR; scalesas k°

N(Eq)
~ quT

| IA(CI),]M(CI) scaleas ¢ °
O But x R = g*/m? L=l ottt
O Effective scaling ¢° “ (2“) (a-k)

~ [ dqqN (E,)

Q 1,.(q) scalesas ¢




What about no background?

(d Same formulas apply to no background

iMror, = —iein(k) |7 |1

o (meBUR) kD (R) 45 (ko ’?ﬂ
1 d k,D"(k)]  DH(k)
o R B
oy v _A « Y 1.

+[’r ;?L k dl;kik)+(k<_>k)] +FM(AI€)] U, (k)

Q B(k), D*(k), F(Ak) Found by

2m(q? — m?) —

a q2—m3

 Applied to pseudoscalar we get

2 o
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