# Beam Background Expectations for Belle II at SuperKEKB

by Andrii Natochii (University of Hawaii at Manoa)

Wednesday 27 Apr 2022, 10:00 → 12:00 Asia/Tokyo

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021) Accelerator Frontier Topical Group 05 (AF05)

#### **AF5: Accelerators for PBC and Rare Processes**

Beam background expectations for Belle II at SuperKEKB

A. Natochii<sup>a</sup>, T. E. Browder<sup>a</sup>, L. Cao<sup>b</sup>, K. Kojima<sup>c</sup>, D. Liventsev<sup>d,e</sup>, F. Meier<sup>f</sup>, K. R. Nakamura<sup>e,g</sup>, H. Nakayama<sup>e,g</sup>, C. Niebuhr<sup>b</sup>, A. Novosel<sup>h</sup>, G. Rizzo<sup>i,j</sup>, S. Y. Ryu<sup>k</sup>, L. Santelj<sup>l,h</sup>, X. D. Shi<sup>e</sup>, S. Stefkova<sup>b</sup>, H. Tanigawa<sup>m</sup>, N. Taniguchi<sup>e</sup>, S. E. Vahsen<sup>a</sup>, L. Vitale<sup>n,o</sup>, Z. Wang<sup>m</sup> natochii@hawaii.edu

## **Paper contents**

| 1 | Executive summary                    | 2  |
|---|--------------------------------------|----|
| 2 | SuperKEKB and Belle II               | 4  |
| 3 | Beam backgrounds and countermeasures | 6  |
| 4 | Belle II background status           | 8  |
| 5 | Beam background simulation           | 9  |
| 6 | Background predictions               | 10 |
| 7 | Discussion                           | 12 |
| 8 | Conclusions                          | 15 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cornell University                                                                                                          | the Simo                                                                                        | ns Foundation and member instituti                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             | Search                                                                                          | All fields 🗸 Searc                                                                                                         |  |
| гхı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>V</b> > hep-ex > arXiv:2203.05731                                                                                        | Help   Advanced                                                                                 | d Search                                                                                                                   |  |
| ligh En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ergy Physics – Experiment                                                                                                   |                                                                                                 | Download:                                                                                                                  |  |
| Submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on 11 Mar 2022 (v1), last revised 16 Mar 2022 (this version, v2)]                                                           |                                                                                                 | • PDF                                                                                                                      |  |
| Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | background expectations for Belle II at                                                                                     | t SuperKEKB                                                                                     | Other formats                                                                                                              |  |
| A. Natochii, T. E. Browder, L. Cao, K. Kojima, D. Liventsev, F. Meier, K. R. Nakamura, H.<br>Nakayama, C. Niebuhr, A. Novosel, G. Rizzo, S. Y. Ryu, L. Santelj, X. D. Shi, S. Stefkova, H.<br>Tanigawa, N. Taniguchi, S. E. Vahsen, L. Vitale, Z. Wang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             | <pre>current browse context:<br/>hep-ex<br/>&lt; prev   next &gt;<br/>new   recent   2203</pre> |                                                                                                                            |  |
| The Belle II experiment at the SuperKEKB electron–positron collider aims to collect an unprecedented data set of 50 ab <sup>-1</sup> to study <i>CP</i> –violation in the <i>B</i> –meson system and to search for Physics beyond the Standard Model (BSM). SuperKEKB is already the world's highest–luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of $6.3 \times 10^{35}$ cm <sup>-2</sup> s <sup>-1</sup> by further increasing the beam currents and reducing the beam-size at the interaction point by squeezing the betatron function down to $\beta_y^* = 0.3$ mm. Beam backgrounds are a key challenge in this context. We estimate the expected |                                                                                                                             |                                                                                                 | Change to browse by:<br>physics<br>physics.acc-ph                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                 | References & Citations <ul> <li>INSPIRE HEP</li> <li>NASA ADS</li> <li>Google Scholar</li> <li>Semantic Scholar</li> </ul> |  |
| backgi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | round evolution in the next ten years and discuss potential challeng                                                        | es and background                                                                               | Export Bibtex Citation                                                                                                     |  |
| mitigation strategies. We find that backgrounds will remain high but acceptable until a luminosity of at least $2.8 \times 10^{35}$ cm <sup>-2</sup> s <sup>-1</sup> is reached at $\beta_y^* = 0.6$ mm. Beyond this luminosity, predictions are highly uncertain, owing to a planned redesign of the interaction region. Improved background estimates with reduced uncertainties for the final maximum-luminosity oncertain will require                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                 | Bookmark<br>X 😨 🧟 🚟                                                                                                        |  |
| compl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etion of this redesign.                                                                                                     | peration in require                                                                             |                                                                                                                            |  |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : Contribution to Snowmass 2021. 25 pages, 9 figures, 2 tables. For the updat<br>Snowmass tonical group number AF06 -> AF05 | te v1 -> v2, we put the corrected                                                               |                                                                                                                            |  |
| Subjects: High Energy Physics - Experiment (hep-ex); Accelerator Physics (physics.acc-ph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                             |                                                                                                 |                                                                                                                            |  |
| lite as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arXiv:2203.05731 [hep-ex]                                                                                                   |                                                                                                 |                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (or arXiv:2203.05731v2 [hep-ex] for this version)                                                                           |                                                                                                 |                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | https://doi.org/10.48550/arXiv.2203.05731 🚺                                                                                 |                                                                                                 |                                                                                                                            |  |
| ubmis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sion history                                                                                                                |                                                                                                 |                                                                                                                            |  |
| rom: And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Irii Natochii [view email]                                                                                                  |                                                                                                 |                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                 |                                                                                                                            |  |

### Overview

- Belle II goal
  - Collect 50 ab<sup>-1</sup> of data by 2030s to study *CP*-violation in the *B*-meson system
- SuperKEKB target peak luminosity
  - $L = 6.3 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ 
    - Squeezing beam sizes at the IP
    - Increasing beam currents
- Challenges
  - Stable machine operation
  - Acceptable beam-induced backgrounds
- Results of the background prediction study
  - Expected backgrounds in Belle II are below detector limits until  $L = 2.8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
  - Beyond this value the prediction is very uncertain
    - Redesign of the interaction region is needed
    - The target machine lattice review is ongoing

L\_projection\_2019-2020(6.5mo)-2031\_30d\_PXD2022\_QCS-RF2026\_2020\_21\_b



Luminosity projection

## $\textbf{KEKB} \rightarrow \textbf{SuperKEKB} \text{ upgrades}$



SuperKEKB collider

- Replaced short dipoles with longer ones (LER)
- Redesigned the lattices and IR (LER and HER)
- Installed antechambers (LER)
- Damping ring to reduce the emittance (LER)
- New superconducting final focusing quads (QCS) near the IP (LER and HER)
- Modified RF systems



## Beam halo cleaning

To avoid radiation damage to the Belle II detector and to avoid QCS quenches due to stray beam particles



- LER  $\rightarrow$  11 collimators (7 horizontal & 4 vertical)
- HER  $\rightarrow$  20 collimators (11 horizontal & 9 vertical)



## $\textbf{Belle} \rightarrow \textbf{Belle II upgrades}$

Designed and optimized for the observation of *CP*-violation in the *B*-meson system

- Newly designed VXD
- CDC with longer arms and smaller cells
- Completely new PID system
  - TOP detector in the barrel
  - ARICH detector on the forward side
- ECL with upgraded crystals and electronics
- Upgraded KLM



Belle II detector

## Beam background monitoring system: Diamonds

Diamond sensor-based detectors (Diamonds)

- Monitor the radiation dose rate around the IR beam pipe
- Four sensors (green) are a part of the fast beam abort system





## Beam background monitoring system: CLAWS

The sCintillation Light And Waveform Sensors (CLAWS) detector system, based on plastic scintillators and silicon photomultipliers, is primarily used for

- Monitoring Belle II backgrounds in time with beam injection into the main ring
- Included into the beam abort logic
- Excellent timing performance



#### Can trigger a beam abort ~10µs earlier than Diamonds

## Beam background monitoring system: TPC & He3-tubes

Time Projection Chambers (TPCs)

- Provide directional measurements of the fast neutron flux in the accelerator tunnel
- Three TPCs in FWD and BWD tunnels



Left: Internal structure of the TPC. Right: Visualization of a nuclear recoil track reconstructed into 3D voxels.

He3-tubes

• Used for the thermal neutron counting around Belle II



Stainless steel tubes 24 cm long and 5 cm in diameter filled with <sup>3</sup>He at 4 atm of pressure.

## Future machine and detector upgrades

There are two major upgrades of the machine planned in the next ten years

- Long Shutdown 1 (LS1) in 2022-2023
  - VXD detector upgrade
  - Installation of a new IP beam pipe with an additional gold layer and slightly modified geometry to reduce the amount of the backscattered SR
  - Replace the TOP short lifetime conventional MCP-PMTs due to their quantum efficiency degradation
  - Additional EM and neutrons shielding installation (under discussion)
  - Non-linear collimation (NLC) insertion (under discussion)
    - A pair of skew sextupole magnets and V-collimator in between
- Long Shutdown 2 (LS2) around 2027 (under discussions)
  - IR upgrade

Our possible future upgrade of the detector is strongly linked to upgrades of the machine

End of the machine and detector overview section

Questions?



## Beam background sources







CDC leakage current during injection

### Beam background countermeasures

Particle scattering (Single-beam)

Collimators (off-momentum particles stop), Vacuum scrubbing (residual gas pressure reduction), Heavy-metal shield outside the IR beam pipe (detector protection against EM showers)





#### Synchrotron radiation

Beryllium beam pipe is coated with a gold layer + ridge surface of the beam-pipe (to avoid direct SR hits at the detector)





## **Uncontrolled beam losses**

- During stable machine operation unexplained beam instabilities and beam losses may occasionally occur in one of the rings
  - One shot at a specific location around the ring due to
    - Injection kicker errors
    - Beam-dust interacting
    - Unknown reasons (under discussion)
- Consequences
  - Detector or collimators damage
  - Superconducting magnet quenches
- Usually only a few such catastrophic beam loss events happen per year
- Cures
  - Upgraded abort system  $\rightarrow$  fast abort signal
    - Diamonds
    - + CLAWS detectors near the IR
    - + CsI-crystals around each ring (pin down high beam losses)



## **Detector background limits**

Table 1: Background rate limits for different Belle II detector sub-systems. The third column shows the total measured background rate in June 2021 excluding the pedestal rate. TOP limits before/after LS1 are related to the replacement of TOP conventional PMTs planned for the LS1. The upper background rate limit quoted for the Diamond read-out electronics can be increased by selecting a lower signal amplification. The KLM detector limit corresponds to the muon reconstruction efficiency drop of about 10%.

| Detector            | BG rate limit                   |                              | Measured BG                                 |                              |
|---------------------|---------------------------------|------------------------------|---------------------------------------------|------------------------------|
| Diamonds            | $1-2 \mathrm{rad/s}$            |                              | $< 125\mathrm{mrad/s}$                      |                              |
| PXD                 | 3 %                             |                              | 0.11%                                       |                              |
| SVD L3, L4, L5, L6  | 4.7%,2.4%,1.8%,1.2%             |                              | < 0.22%                                     |                              |
| CDC                 | $200\mathrm{kHz}/\mathrm{wire}$ |                              | $27\mathrm{kHz/wire}$                       |                              |
| ARICH               | 10 MHz/HAPD                     |                              | $0.5\mathrm{MHz}/\mathrm{HAPD}$             |                              |
| Barrel KLM L3 50 MI |                                 | $50\mathrm{MHz}$             |                                             | $3.8\mathrm{MHz}$            |
|                     | non-luminosity BG lux           |                              | luminosity BG                               |                              |
|                     | before LS1                      | after LS1                    | per $10^{35} \text{ cm}^{-2} \text{s}^{-1}$ |                              |
| TOP ALD             | $3\mathrm{MHz}/\mathrm{PMT}$    | $5\mathrm{MHz}/\mathrm{PMT}$ | $0.9\mathrm{MHz}/\mathrm{PMT}$              | $2\mathrm{MHz}/\mathrm{PMT}$ |
|                     |                                 |                              |                                             |                              |

### Measured Belle II background level

- Dominant backgrounds
  - LER single-beam
  - Luminosity
- HER single-beam background ~10%
- SR is of no concern for the PXD
- We start to see single-event upsets (SEUs) due to EM shows and neutrons



Figure 4: Measured Belle II background in June 2021. Each column is a stacked histogram. The PXD SR background is too low ( $< 1 \times 10^{-3}$ %) to be displayed. QCS-BWD-315, BP-FWD-325 and QCS-FWD-225 indicates backward QCS, beam pipe and forward QCS Diamond detectors, respectively, with the higher dose rate. Barrel KLM L3 corresponds to the innermost RPC layer in the barrel region of the KLM detector. TOP ALD shows the averaged background over ALD-type MCP-PMTs, slots from 3 to 8.

#### End of the background overview section

Questions?

## Beam background simulation

- Single-beam background:
  - Strategic Accelerator Design (SAD @KEK, multi-turn particle tracking)
    - Realistic collimator shape
    - Particle interaction with collimator materials
    - Measured residual gas pressure distribution around each ring
  - Geant4 (detector modeling)
    - Realistic detector model
    - Modeling of the detector surroundings, collider cavern
- Luminosity background:
  - Geant4 (single-turn effect, colliding beams)
- Synchrotron radiation background:
  - Geant4 (close to the Belle II detector)
- Andrii NATOCHII, University of Hawaii



Recently improved Geant4 model of Belle II and collider cavern. Black dots represent single-beam losses <sup>17</sup>

## **Background prediction accuracy**

- Ratios of measured to simulated background rates, a.k.a. data/MC ratios
  - Illustrate accuracy of our beam background prediction
- They are now within one order of magnitude of unity
  - Based on May & June 2020 and June 2021 dedicated background studies
  - Substantial improvement compared to the early SuperKEKB commissioning phases in 2016 and 2018



## **Background prediction for higher luminosities**

Table 2: Predicted SuperKEKB parameters, expected to be achieved by the specified date.  $\beta^*$ ,  $\mathcal{L}$ , I,  $BD_{int}$ ,  $\overline{P}$ ,  $n_b$ ,  $\varepsilon$ ,  $\sigma_z$  and CW stand for the betatron function at the interaction point, luminosity, beam current, integrated beam dose, average beam pipe gas pressure, number of bunches, equilibrium beam emittance, bunch length and Crab-Waist sextupoles, respectively.

| Parameter                                                                 | Setup-1   | Setup-2   | Setup-3   |
|---------------------------------------------------------------------------|-----------|-----------|-----------|
| Date                                                                      | Jan 2023  | Jan 2027  | Jan 2031  |
| $\beta_{\rm v}^*({\rm LER}/{\rm HER}) \ [{\rm mm}]$                       | 0.8/0.8   | 0.6/0.6   | 0.27/0.3  |
| $\dot{\beta_{\mathrm{x}}^{*}}(\mathrm{LER}/\mathrm{HER}) \ \mathrm{[mm]}$ | 60/60     | 60/60     | 32/25     |
| $\mathcal{L} \; [	imes 10^{35} \; { m cm}^{-2} { m s}^{-1}]$              | 1.0       | 2.8       | 6.3       |
| I(LER/HER) [A]                                                            | 1.66/1.20 | 2.52/1.82 | 2.80/2.00 |
| $BD_{\mathrm{int}}$ [kAh]                                                 | 10        | 45        | 93        |
| $\overline{P}(\text{LER/HER})$ [nPa]                                      | 93/23     | 48/17     | 33/15     |
| $n_b$ [bunches]                                                           | 1370      | 1576      | 1761      |
| $\varepsilon_{\rm x}({\rm LER}/{\rm HER})$ [nm]                           | 4.5/4.5   | 4.6/4.5   | 3.3/4.6   |
| $\varepsilon_{\rm y}/\varepsilon_{\rm x}({\rm LER/HER})$ [%]              | 1/1       | 1/1       | 0.27/0.28 |
| $\sigma_{\rm z}({\rm LER/HER}) \ [{\rm mm}]$                              | 7.58/7.22 | 8.27/7.60 | 8.25/7.58 |
| CW                                                                        | ON        | ON        | OFF       |
|                                                                           |           |           |           |

We have only old optics files for the design lattice

- No solution for the Crab-Waist scheme
  - Narrow dynamic aperture (DA)
  - Too short beam lifetime
- Final IR geometry is not defined

Based on the SuperKEKB Roadmap-2020

Setup-2\*: Non-linear collimation LER insersion with two skew sextupoles +

ER Insersion with two skew sextupoles +

V-collimator  $\rightarrow$  beam halo cleaning in both planes

### **Expected backgrounds**

 $\beta_{v}^{*} = 0.8 \text{ mm}$ 



 $(\mathbf{\Theta})$ Andrii NATOCHII. University of Hawaii Figure 8: Estimated Belle II backgrounds for Setup-2\* with the NLC. Each column is a stacked histogram.

## Background status and evolution

- Current background rates in Belle II are well below limits, see Figure
  - There is margin for injection backgrounds and unexpected problems
- Backgrounds will remain high but acceptable until a luminosity of at least 2.8 x10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup> is reached

#### Predicted background levels are obtained as follows

- 1. Measure current levels of each background component
- 2. Simulate beam-induced backgrounds
- 3. Calculate Data/MC ratios
- 4. For future optics, adjust collimators in simulation
- 5. Simulate future background rates
- 6. Correct those by Data/MC



Measured and predicted beam background hit rates in the Belle II TOP detector, for various machine configurations. These PMTs are expected to be the detector components most vulnerable to beam backgrounds.



### **Background status and evolution**

- The total background at target luminosity is very uncertain due to
  - Future IR redesign (under discussion)
  - Unexpected IR beam pipe contribution to beam instabilities (under investigation)



Measured and predicted beam background hit rates in the Belle II TOP detector, for various machine configurations. These PMTs are expected to be the detector components most vulnerable to beam backgrounds.

End of the background prediction section Questions?

## Summary

#### Review SuperKEKB and Belle II upgrades

- Stable operation at a world record luminosity ~4 x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> Ο
- Further machine and detector improvements are foreseen 0
  - Collimation system upgrade
  - Additional EM and neutrons shielding installation
  - IR geometry and machine lattice upgrade
- Beam-induced backgrounds are expected to remain acceptable
  - Until at least  $\beta_y^* = 0.6 \text{ mm} (2027)$  before the LS2 Assuming TOP short-lifetime PMT replacement Ο
  - There are several uncertainties that could affect our forecast in weather direction 0
    - Additional shielding installation
    - Require further studies and refinement
- It is too early to make accurate predictions for the design machine lattice
  - Too tight dynamic aperture Ο
    - Short beam lifetime
    - Specific luminosity degradation
  - Background could exceed the detector's limit at  $\beta_{v}^{*} = 0.3$  mm (2031) 0
  - Several machine operation schemes, instability and background countermeasures, and upgrades of the experiment are Ο under consideration
- We are closely collaborating with EU, US and Asian accelerator laboratories on optimizing upgrades of SuperKEKB and reaching the target luminosity ~6 x10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>

#### Thank you for attention!

## BACKUPS

## Timeline for machine upgrades

- **Phase 1** (2016)  $\rightarrow$  Accelerator commissioning
- Phase 2 (2018) → First collisions; partial detector; background study; physics possible
- Phase 3 (2019)  $\rightarrow$  Nominal Belle II start





## SuperKEKB final focusing system (QCS)



## $\textbf{KEKB} \rightarrow \textbf{SuperKEKB: machine modifications}$



## $\textbf{KEKB} \rightarrow \textbf{SuperKEKB: luminosity degradation \& crab waist scheme}$

#### Initially

- Was hard to operate the SuperKEKB near the working point of the betatron tune (.57,.61)
  - $\leftarrow$  due to luminosity degradation caused by beam-beam resonances
- Since early 2020
  - Used a set of dedicated sextupoles for the crab waist scheme
    - ← does not affect the dynamic aperture
    - $\leftarrow \text{beam-beam resonances are suppressed}$



Crab Waist collision scheme: a) crab sextupoles OFF; b) crab sextupoles ON

### Beam-induced background countermeasures: beam-gas scattering (1)

- Initially, the beam-gas background was assumed to not be dangerous, based on KEKB experience
- However, it can be detrimental due to a smaller beam pipe aperture  $A_{\gamma}$  and a larger  $\beta^{\max}_{\gamma}$  in superconductive quadrupoles of the final focusing system (QCS)
- Simulation suggested to add vertical collimators at small  $\beta_{\rm Y}$  to suppress this background in the interaction region

|                        | KEKB | SuperKEKB |
|------------------------|------|-----------|
| $A_{\rm Y}$ , mm       | 35   | 13.5      |
| $\beta^{\max}_{Y}$ , m | 600  | 2900      |



## Beam-induced background countermeasures: beam-gas scattering (2)

- Vacuum scrubbing reduces the residual gas pressure in the beam pipes
  - At much higher beam doses we may reach the hardware limit of 10 nPa for most of cold cathode gauges (CCG)
- The large values of dP/dI around 2016-2018 were the result of the electron cloud effect
  - Was cured by applying permanent magnets and solenoids around the beam pipe
- The beam-gas lifetime in SuperKEKB <1 hour, while in KEKB

>10 hours

$$P = P_{dynamic} + P_{base}$$

$$P_{dynamic} = I \times dP/dI$$

$$P_{base} = P(0 \text{ A}) \approx 10 \text{ nPa}$$



An example of the LER dynamic pressure reduction due to vacuum scrubbing

## Beam-induced background countermeasures: Touschek scattering

#### Initially

- Was assumed to be the most dangerous background  $\sim (\sigma_{\rm X} \sigma_{\rm Y} \sigma_{\rm Z})^{-1}$
- Simulation suggested to add horizontal collimators upstream the IP at large  $\beta_x$

#### • Nowadays

- Only ~1% of the total ring Touschek losses occur in the IR
- Beam lifetime is mainly defined by Touschek losses,  $\tau \sim 10$  (30) min for LER (HER)

