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Convolutional Neural Networks (CNN)
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Convolutional Layer 1
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Recurrent Residual Convolutional Neural Network based

Layers are trying to learn f(x) for the given input x. on U-Net (R2U-Net) for Medical Image Segmentation

https://arxiv.org/pdf/1802.06955.pdf
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Here, Layers are trying to learn the residual unlike UNet where they try to learn f(x). ResNet helps in solving the
problem of vanishing gradients and also of overfitting to an extent.



Attention ResNet
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Architecture is very similar to ResNet, except there is an extra block called attention block. Attention in U-Nets is a

method to highlight only the relevant activations during the training.



Attention Block
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It reduces computation resources wasted on irrelevant activations and provides better generalization of the network




Data Preparation

Input for Network

Digitized Image b) Pedmap c) Pedestal subtracted  d) Mask (Track

a)
(512x512) (512x512) (Blurred -> Thresholded) w/0 noise)

Pedestal map is subtracted from the digitized image. Pedestal subtracted image is then passed through a median filter with a kernel
size of 3. Blurred image is thresholded with a threshold of 1 (pixels with intensity more than 1 becomes 255 and rest 0). These images

are input for the network.
Masks are produced by digitizing the tracks without noise. Network is trained to produce images similar to masks.



Training and Validation accuracy
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Area of Overlap

Jaccard Coefficient = Intersection over Union |oU =

o o Area of Union
Jaccard Coefficient measures the similarity

between between 2 sets of data. The closer to 1
means more similar data.




Prediction from the Network

a) Input Image b) Mask

Example shown here is for a 60 keV ER.

c)

Prediction of the Network
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Prediction from the Network

a) Input Image b) Mask

Example shown here is for a 1 keV NR.

c)

Prediction of the Network
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Instance Segmentation
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Clusters are found using OpenCV module.

60 keV ER

1 keV NR
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Reconstruction Efficiency
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Reconstruction efficiency at 1 keV of NR is around 70% and at 3 keV NR is 100%.
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(a) An example of an input image as given to sMask-RCNN to process
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Figure 3: Network Architecture for Mask-RCNN in MicroBooNE.

Cosmic ray muon clustering for the MicroBooNE liquid
argon time projection chamber using sMask-RCNN

https://arxiv.org/pdf/2201.05705.pdf

(b) A simulated neutrino interaction overlaid on cosmic ray muons from data, labeled by sMask-RCNN
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