$B \rightarrow K \nu \bar{\nu}$ measurement and new physics interpretation

Rusa Mandal Universität Siegen

on arXiv: 2107.01080

with Thomas Browder, N.G. Deshpande & Rahul Sinha

January 25, 2022

Outline

Introduction

- New Physics analysis
 - Leptoquarks
 - ► HeavyZ'

Summary

Introduction

 \mathcal{M} Theoretically much cleaner than $B \to K^* \ell^- \ell^+$

Experimentally quite challenging due to two missing neutrinos— — No signal has been observed so far

Introduction

Inclusive tagging technique from Belle II has higher efficiency~4%

Hamiltonian

 \triangleright Effective Hamiltonian with all possible dim-6 operators for $b
ightarrow s
u ar{
u}$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha_{\text{EM}}}{4\pi} V_{tb} V_{ts}^* \left(C_{LL}^{\text{SM}} \delta_{\alpha\beta} [\mathcal{O}_{LL}^V]^{\alpha\beta} + \sum_{\substack{X=S,V,T\\A,B=L,R}} [C_{AB}^X]^{\alpha\beta} [\mathcal{O}_{AB}^X]^{\alpha\beta} \right)$$

SM FCNC contribution $C_{LL}^{SM} = -2X_t/s_w^2 = -12.7$ Includes light right-handed neutrinos $\begin{bmatrix} \mathcal{O}_{AB}^{V} \end{bmatrix}^{\alpha\beta} \equiv (\bar{s} \gamma^{\mu} P_{A} b) \left(\bar{\nu}^{\alpha} \gamma_{\mu} P_{B} \nu^{\beta} \right),$ $\begin{bmatrix} \mathcal{O}_{AB}^{S} \end{bmatrix}^{\alpha\beta} \equiv (\bar{s} P_{A} b) \left(\bar{\nu}^{\alpha} P_{B} \nu^{\beta} \right),$ $\begin{bmatrix} \mathcal{O}_{AB}^{T} \end{bmatrix}^{\alpha\beta} \equiv \delta_{AB} \left(\bar{s} \sigma^{\mu\nu} P_{A} b \right) \left(\bar{\nu}^{\alpha} \sigma_{\mu\nu} P_{B} \nu^{\beta} \right)$

Solution Observables: Branching ratio, differential distribution in q^2 Longitudinal polarization fraction in $B \to K^* \nu \bar{\nu}$

Hamiltonian

Variation with individual Wilson coefficients

All operators can achieve the expected range

HEP journal club, Hawaii

B-anomalies

Tensions in FCNC decay rate ratios $R_{K^{(*)}} \equiv \frac{\text{BR}(B \to K^{(*)} \mu \mu)}{\text{BR}(B \to K^{(*)} ee)}$

B-anomalies

10

15

20

 $q^2 \,[{\rm GeV}^2/c^4]$

5

Tensions in FCNC decay rate ratios $R_{K^{(*)}} \equiv \frac{\text{BR}(B \to K^{(*)} \mu \mu)}{\text{BR}(B \to K^{(*)} ee)}$ $\times 10^{-8}$ 2.0 $R_{
m K}$ $dB(B_s^0 \rightarrow \phi \mu^+ \mu^-)/dq^2 \ (\text{GeV}^{-2}c^4)$ <u></u> LHCb 9fb[−] $R_{K^{*0}}$ LHCb 14 [LHCb LHCb 3 fb⁻¹ [2105.14007^{*} 12 SM (LCSR+Lattice) 1.51.5 SM (LCSR) 10 SM (Lattice) 8 1.0 ψ(2S) J/ψ SM 6 - 4È 0.50.5 LHCb 05.05802 BaBai 3933 2F LHCb Belle 0904.077 0 L 0 0.0 0

Exciting discrepancies observed in charged current B decays also

10

15

 $q^2 \left[\text{GeV}^2 / c^4 \right]$

20

5

0

$$R(D^{(*)}) \equiv \frac{\mathrm{BR}(B \to D^{(*)}\tau\nu)}{\mathrm{BR}(B \to D^{(*)}\ell\nu)}$$
$$\ell \in \{e, \mu\}$$

10

15

 $q^{2} [\text{GeV}^{2}/c^{4}]$

5

B-anomalies

С

0.25

0.2

Belle17

0.2

b

Rusa Mandal, Siegen U.

0.4

Belle19

+ Average of SM predictions $R(D) = 0.299 \pm 0.003$

 $R(D^*) = 0.258 \pm 0.005$

0.3

Belle15

HFLAV

Spring 2019

 $P(\chi^2) = 27\%$

R(D)

0.5

Leptoquarks

ℓ q Idea from '70s: R-parity violating SUSY, GUTs • LQ

Mediators	Spin	Interaction terms	Operators
$S_3(\bar{3}, 3, 1/3)$	0	$+ \overline{Q^c} Y_{S_3} i \tau_2 \boldsymbol{\tau} \cdot \mathbf{S_3} L$	\mathcal{O}_{LL}^V
$\tilde{R}_2(3, 2, 1/6)$	0	$- \overline{d}_R Y_{\tilde{R}_2} \tilde{R}_2^T i\tau_2 L + \overline{Q} Z_{\tilde{R}_2} \tilde{R}_2 \nu_R$	$\mathcal{O}_{RL}^{V}, \mathcal{O}_{LR}^{V}, \mathcal{O}_{LL}^{S,T}, \mathcal{O}_{RR}^{S,T}$
$S_1(\bar{3}, 1, 1/3)$	0	$+ \overline{Q^c} i\tau_2 Y_{S_1} L S_1 + \overline{u_R^c} \tilde{Y}_{S_1} S_1 e_R + \overline{d_R^c} Z_{S_1} S_1 \nu_R$	$\mathcal{O}_{RR}^{S,V,T}, \mathcal{O}_{LL}^{S,V,T}$
$U_3^{\mu}(3,3,2/3)$	1	$+ \overline{Q} \gamma^{\mu} \tau^a Y_{U_1} L \ U^a_{1\mu}$	\mathcal{O}_{LL}^V
$V_2^{\mu}(\bar{3}, 2, 5/6)$	1	$+ \overline{d_R^c} \gamma^\mu Y_{V_2} V_{2\mu}^T i\tau_2 L + \overline{Q_L^c} \gamma^\mu \tilde{Y}_{V_2} i\tau_2 V_{2\mu} e_R$	\mathcal{O}_{RL}^S
$\bar{U}_1^{\mu}(3, 1, -1/3)$	1	$+ \overline{d}_R Z_{\bar{U}_1} \gamma^\mu \bar{U}_{1\mu} \nu_R$	\mathcal{O}_{RR}^{V}

*S*₃ :

1st generation couplings stringently constrained from Kaon, lepton data

$$\begin{array}{l} \checkmark b \rightarrow c\tau\bar{\nu} \colon \mathscr{P}_{LL}^V \\ \text{Large } Y^{23}, Y^{33} \text{ values required for } R(D^{(*)}) \text{ are} \\ \text{excluded from } B_s^0 - \bar{B}_s^0 \end{array}$$

 S_3 :

1st generation couplings stringently constrained from Kaon, lepton data

 S_3 :

1st generation couplings stringently constrained from Kaon, lepton data

 S_3 :

1st generation couplings stringently constrained from Kaon, lepton data

However allowed range of Y^{23}, Y^{33} together with Y^{22}, Y^{32} explaining $b \rightarrow s\mu\mu$ anomalies give $R_{K}^{\nu} = 2.4 \pm 3.6$

 \tilde{R}_2 :

 \tilde{R}_2 :

 \tilde{R}_2 :

*S*₁ :

 $b \rightarrow s \mu \mu$: No tree-level contribution, 1-loop effect requires large couplings incompatible with other data

*S*₁ :

 $b \rightarrow s \mu \mu$: No tree-level contribution, 1-loop effect requires large couplings incompatible with other data

LH only $b \to c \tau \bar{\nu} \colon \mathscr{P}_{LL}^V$ $R(D^{(*)}) \sim 1.04 R(D^{(*)})_{\rm SM}$ $\begin{array}{c} Y^{22} & Y^{23} \\ Y^{32} & V^{33} \end{array}$ Large Y^{23} , Y^{33} values forbidden from $B_s^0 - \bar{B}_s^0$ & $Z \to \tau \tau$ $b \to s \nu \bar{\nu}: C_{LL}^{\nu} \longrightarrow R_{K}^{\nu} = 2.46 \pm 1.22$ + $\checkmark b \to c\tau\bar{\nu} \colon \mathscr{P}_{LL}^V, \mathscr{P}_{LL}^S = -4\mathscr{P}_{LL}^T$ $\begin{array}{c} \tilde{Y}^{22} & \tilde{Y}^{23} \\ \tilde{Y}^{32} & \tilde{V}^{33} \end{array} \right)$ $b \to s \nu \bar{\nu}: C_{LL}^{\nu} \longrightarrow R_{K}^{\nu} = 2.35 \pm 1.97.$ LH+RF

 $b \rightarrow s \nu \bar{\nu}: C^S_{RR}$ generated with RHN No interference with SM

> Region explaining $R(D^{(*)})$ is completely excluded by R_K^{ν}

HEP journal club, Hawaii

Leptoquarks

Mediators	Spin	R_{K}	R_{K^*}	R(D)	$R(D^*)$	$R_K^{ u}$
$S_3(\bar{3}, 3, 1/3)$	0	~		×	×	
<i>Ã</i> ₂ (3, 2, 1/6) + RHN	0	~	$R_{K^*}^{[1,6]} > 1$	— no	effect —	no effect
<i>S</i> ₁ (3, 1, 1/3) + RHN	0	— n	o effect —	✓ ×	✓ ★ ৰ⊸	Nationalistic
$U_3^{\mu}(3,3,2/3)$	1	~	✓	×	×	
$V_2^{\mu}(\bar{3},2,5/6)$	1	×	×	~	×	\checkmark
$\bar{U}_1^{\mu}(3, 1, -1/3)$	1	— nc	o effect —	— no eff	ect —	\checkmark

Heavy Z':

Neutral current
$$\mathcal{L}(Z') = \sum_{i,j,\psi_L} \Delta_L^{ij} \bar{\psi}_L^i \gamma^\mu P_L \psi_L^j Z'_\mu + \sum_{i,j,\psi_R} \Delta_R^{ij} \bar{\psi}_R^i \gamma^\mu P_R \psi_R^j Z'_\mu$$

 $b \rightarrow s\mu\mu$: LH couplings $C_9^{\text{NP}} = -C_{10}^{\text{NP}} = \frac{v^2}{M_{Z'}^2} \frac{\pi}{\alpha_{\text{EM}} V_{tb} V_{ts}^*} \Delta_L^{sb} \Delta_L^{\mu\mu}$
Stringently constrained from tree-level contribution to $B_s^0 - \bar{B}_s^0$
 $\Delta_L^{sb} = (8.5 \pm 6.4) \times 10^{-3}, \quad \Delta_L^{\mu\mu} = 2.00 \pm 0.95$
 $R_K^\nu = 1.05 \pm 0.03$

Heavy Z':

Neutral current
$$\mathcal{L}(Z') = \sum_{i,j,\psi_L} \Delta_L^{ij} \bar{\psi}_L^i \gamma^{\mu} P_L \psi_L^j Z'_{\mu} + \sum_{i,j,\psi_R} \Delta_R^{ij} \bar{\psi}_R^i \gamma^{\mu} P_R \psi_R^j Z'_{\mu}$$

 $b \rightarrow s\mu\mu$: LH couplings $C_9^{\mathrm{NP}} = -C_{10}^{\mathrm{NP}} = \frac{v^2}{M_{Z'}^2} \frac{\pi}{\alpha_{\mathrm{EM}} V_{tb} V_{ts}^*} \Delta_L^{sb} \Delta_L^{\mu\mu}$
Stringently constrained from tree-level contribution to $B_s^0 - \bar{B}_s^0$
 $\Delta_L^{sb} = (8.5 \pm 6.4) \times 10^{-3}, \quad \Delta_L^{\mu\mu} = 2.00 \pm 0.95$
 $R_K^{\nu} = 1.05 \pm 0.03$

 $b \rightarrow s\mu\mu$: LH + RH couplings $C_9^{\rm NP} = -C_{10}^{\rm NP}$ & $C_9' = -C_{10}'$ No new contribution to $R_K^{\nu} \simeq 1.1$

HEP journal club, Hawaii

Comparison

Comparison

couplings

Comparison

Summary

- Experimental challenges might be overcome with inclusive tag technique@Belle II expecting signal soon?!
- Possibilities to connect the indicated excess with both NC and CC B-anomalies in `simplified' models

 \triangleright RHN explanations to $R(D^{(*)})$ are excluded for $S_1 \& \tilde{R}_2$ by $B \to K^{(*)} \nu \bar{\nu}$

 \triangleright Heavy Z' explaining $b \rightarrow s \mu \mu$ with minimal setup can not enhance R_K^{ν}

- $> S_1$ explaining CC *B*-anomalies $< S_3$ in NC+CC framework can produce expected enhancement in R_K^{ν}
- Other links—Dark matter connection?! [1111.6402]

Summary

- Experimental challenges might be overcome with inclusive tag technique@Belle II — expecting signal soon?!
- Possibilities to connect the indicated excess with both NC and CC B-anomalies in `simplified' models
- \gg RHN explanations to $R(D^{(*)})$ are excluded for $S_1 \& \tilde{R}_2$ by $B \to K^{(*)} \nu \bar{\nu}$
- \gg Heavy Z' explaining $b \rightarrow s \mu \mu$ with minimal setup can not enhance R_{κ}^{ν}
- $\gg S_1$ explaining CC B-anomalies & S_3 in NC+CC framework can produce expected enhancement in R_{K}^{ν} Thank you
- Other links—Dark matter connection?! [1111.6402]

Rusa Mandal, Siegen U.

HEP journal club, Hawaii

Back ups

Rusa Mandal, Siegen U.

Charged current

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= \frac{4G_F V_{cb}}{\sqrt{2}} \left(\mathcal{Q}_{LL}^{V\alpha\beta} \delta_{\alpha\beta} + \sum_{\substack{X=S,V,T\\A,B=L,R}} \mathcal{P}_{AB}^{X\alpha\beta} \mathcal{Q}_{AB}^{X\alpha\beta} \right) \\ \mathcal{Q}_{AB}^{V\alpha\beta} &\equiv (\bar{c} \gamma^{\mu} P_A b) \left(\bar{\ell}^{\alpha} \gamma_{\mu} P_B \nu^{\beta} \right) , \\ \mathcal{Q}_{AB}^{S\alpha\beta} &\equiv (\bar{c} P_A b) \left(\bar{\ell}^{\alpha} P_B \nu^{\beta} \right) , \\ \mathcal{Q}_{AB}^{S\alpha\beta} &\equiv (\bar{c} P_A b) \left(\bar{\ell}^{\alpha} \sigma_{\mu\nu} P_B \nu^{\beta} \right) , \\ \mathcal{P}_{LL}^{V\alpha\beta} &= + \frac{v^2}{\Lambda^2} \sum_{m=1}^3 \frac{V_{2m}}{V_{cb}} [\mathcal{C}_{lq}^{(3)}]^{m3\alpha\beta} , \\ \mathcal{P}_{LL}^{S\alpha\beta} &= - \frac{v^2}{2\Lambda^2 V_{cb}} [\mathcal{C}_{lequ}^{(1)*}]^{23\alpha\beta} , \\ \mathcal{P}_{RL}^{T\alpha\beta} &= - \frac{v^2}{2\Lambda^2 V_{cb}} [\mathcal{C}_{lequ}^{(3)*}]^{23\alpha\beta} , \\ \mathcal{P}_{RL}^{S\alpha\beta} &= + \frac{v^2}{2\Lambda^2} \sum_{m=1}^3 \frac{V_{2m}}{V_{cb}} [\mathcal{C}_{ledq}^{*}]^{m3\alpha\beta} . \end{aligned}$$

Running factors: $\mathcal{P}_{AB}^{S(T)}(m_b) = 1.67(0.84) \times \mathcal{P}_{AB}^{S(T)}(\Lambda = \mathcal{O}(\text{TeV}))$

Neutral current

 \blacktriangleright Hamiltonian and relevant operators for $b \to s \mu \mu$

$$\mathcal{H}^{\text{eff}} = \frac{-4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) \mathcal{O}_i(\mu) ,$$

$$\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \left(\bar{s} \sigma_{\mu\nu} P_R b \right) F^{\mu\nu}$$

$$\mathcal{O}_9 = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_\mu P_L b \right) \left(\bar{\mu} \gamma^\mu \mu \right)$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_\mu P_L b \right) \left(\bar{\mu} \gamma^\mu \gamma_5 \mu \right)$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_\mu P_L b \right) \left(\bar{\mu} \gamma^\mu \gamma_5 \mu \right)$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_\mu P_L b \right) \left(\bar{\mu} \gamma^\mu \gamma_5 \mu \right)$$

$$\mathcal{O}_{10} = \frac{e^2}{16\pi^2} \left(\bar{s} \gamma_\mu P_L b \right) \left(\bar{\mu} \gamma^\mu \gamma_5 \mu \right)$$

$$\mathcal{C}_9^{ij\alpha\beta} = -\mathcal{C}_{10}^{ij\alpha\beta} = -\frac{v^2}{M^2} \frac{\pi}{\alpha_{\rm EM} V_{td_j} V_{td_i}^*} \left([\mathcal{C}_{lq}^{(3)}]^{ij\alpha\beta} + [\mathcal{C}_{lq}^{(1)}]^{ij\alpha\beta} \right)$$

$$\begin{split} & [\mathcal{C}_{lq}^{(1)}]^{ij\alpha\beta} = -\frac{1}{4} (3 |g_3|^2 \tilde{S}_{QL}^{j\beta} \tilde{S}_{QL}^{*i\alpha} + |g_1|^2 S_{QL}^{j\beta} S_{QL}^{*i\alpha}) \\ & [\mathcal{C}_{lq}^{(3)}]^{ij\alpha\beta} = -\frac{1}{4} (|g_3|^2 \tilde{S}_{QL}^{j\beta} \tilde{S}_{QL}^{*i\alpha} - |g_1|^2 S_{QL}^{j\beta} S_{QL}^{*i\alpha}), \end{split}$$

Model independent bound

Assuming SM sensitivity with full Belle-II data bounds on EFT Wilson coefficients

[2111.04327]

	Current Bound			Future Sensitivity (50 ab^{-1})		
Operator	Value $[\text{TeV}^{-2}]$	NP scale [TeV]	Observable	Value $[\text{TeV}^{-2}]$	NP scale [TeV]	Observable
$\mathcal{O}_{ u d, lpha lpha b}^{ ext{VLL,NP}}$	0.03	6	$B\to K^*\nu\nu$	0.022	7	$\begin{array}{c} B \to K \nu \nu \\ B \to K^* \nu \nu \end{array}$
$\mathcal{O}_{ u d, lpha lpha s b}^{ ext{VLR}}$	0.021	7	$B \to K \nu \nu$	0.002	25	$B \to K \nu \nu$ $B \to K^* \nu \nu$
$\mathcal{O}_{ u d, \gamma \delta s b}^{ ext{VLL}}$	0.017	8	$B \to K^* \nu \nu$	0.006	13	$B \to K \nu \nu$ $B \to K^* \nu \nu$
$\mathcal{O}_{ u d, \gamma \gamma s b}^{ ext{SLL}}$	0.012	10	$B\to K\nu\nu$	0.002	25	$B\to K\nu\nu$
$\mathcal{O}_{ u d, \gamma \delta s b}^{ ext{SLL}}$	0.009	10	$B \to K \nu \nu$	0.002	25	$B\to K\nu\nu$
$\mathcal{O}_{ u d, \gamma \delta s b}^{ ext{TLL}}$	0.003	20	$B\to K^*\nu\nu$	0.0009	35	$B\to K^*\nu\nu$

Differential distribution

$$\begin{split} \frac{d\Gamma}{dq^2}(B \to K\nu\bar{\nu}) &= \frac{G_F^2 |V_{tb} V_{ts}^*|^2 \alpha_{\rm EM}^2}{192 \times 16\pi^5 m_B^3} q^2 \lambda_K^{1/2}(q^2) \times \\ &\times \sum_{\alpha=1}^3 \sum_{\beta=1}^3 \left[\left(|C_{LL}^{\rm SM} \delta_{\alpha\beta} + [C_{LL}^V]^{\alpha\beta} + [C_{RL}^V]^{\alpha\beta}|^2 + |[C_{LR}^V]^{\alpha\beta} + [C_{RR}^V]^{\alpha\beta}|^2 \right) (H_V^s)^2 \right. \\ &+ \frac{3}{2} \left(|[C_{RL}^S]^{\alpha\beta} + [C_{LL}^S]^{\alpha\beta}|^2 + |[C_{RR}^S]^{\alpha\beta} + [C_{LR}^S]^{\alpha\beta}|^2 \right) (H_S^s)^2 \\ &+ 8 \left(|[C_{LL}^T]^{\alpha\beta}|^2 + |[C_{RR}^T]^{\alpha\beta}|^2 \right) (H_T^s)^2 \right], \\ \frac{d\Gamma}{dq^2}(B \to K^*\bar{\nu}\nu) &= \frac{G_F^2 |V_{tb} V_{ts}^*|^2 \alpha_{\rm EM}^2}{192 \times 16\pi^5 m_B^3} q^2 \lambda_{K^*}^{1/2}(q^2) \times \\ &\times \sum_{\alpha=1}^3 \sum_{\beta=1}^3 |C_{LL}^{\rm SM} \delta_{\alpha\beta} + [C_{LL}^V]^{\alpha\beta}|^2 (H_{V,+}^2 + H_{V,-}^2) \\ &+ |C_{LL}^{\rm SM} \delta_{\alpha\beta} + [C_{LL}^V]^{\alpha\beta}|^2 (H_{V,+}^2 + H_{V,-}^2) \\ &+ \left| ([C_{LL}^{\rm SM} \delta_{\alpha\beta} + [C_{LL}^V]^{\alpha\beta}]^2 + |[C_{RR}^V]^{\alpha\beta}|^2 H_{V,0}^2 - 4\operatorname{Re}\left[(C_{RR}^{\rm SM})^2 H_{V,+} + H_{V,-} \\ &+ \left(|[C_{RL}^V]^{\alpha\beta}|^2 + [C_{LR}^V]^{\alpha\beta}|^2 + |[C_{RR}^V]^{\alpha\beta}|^2 \right) (H_{V,+}^2 + H_{V,-}^2) \\ &+ |[C_{LR}^V]^{\alpha\beta} - [C_{RR}^V]^{\alpha\beta}|^2 + |[C_{RR}^N]^{\alpha\beta}|^2 H_{V,0}^2 - 4\operatorname{Re}\left[[C_{LR}^V]^{\alpha\beta} H_{V,+} + H_{V,-} \\ &+ \frac{3}{2} \left(|[C_{RL}^S]^{\alpha\beta} - [C_{LL}^S]^{\alpha\beta}|^2 + |[C_{RR}^S]^{\alpha\beta} - [C_{LR}^S]^{\alpha\beta}|^2 \right) H_2^3 \\ &+ 8 \left(|[C_{LL}^T]^{\alpha\beta}|^2 + |[C_{RR}^T]^{\alpha\beta}|^2 \right) \left(H_{T,+}^2 + H_{T,-}^2 + H_{T,0}^2 \right) . \end{split}$$

B anomalies

