Cosmologically Coupled Compact Objects (C3Os) A single parameter model for LVC mass-redshift distributions

*K. Croker¹, M. Zevin², D. Farrah^{1,3}, K. Nishimura¹, G. Tarlé⁴

¹Department of Physics and Astronomy, University of Hawai'i at Mānoa
 ²Enrico Fermi Institute, University of Chicago
 ³Institute for Astronomy (IfA), University of Hawai'i at Mānoa
 ⁴Department of Physics, University of Michigan at Ann Arbor

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Introduction	Interpretation of BH spacetimes	Cosmologically Coupled Compact Objects	
00000			

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Introduction 0●000	Interpretation of BH spacetimes	Cosmologically Coupled Compact Objects	Results 00000
	0000		
at a firm of			
Croker Zevin Fara	ah Nishimura Tarlé	University of Hawai'i P&A HEP Journal Club Janua	ry 18th 2022
KS Croker et al	2021 Ap // 921 22		a
- K.S. Croker et al.	2021 Apjl 921 22	3/1	9

Cosmologically Coupled Compact Objects

Stellar population synthesis BHs

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Stellar population synthesis BHs don't agree with data

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

1. Interpretation of BH spacetimes

1.1 Kerr Metric

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

2. Cosmologically Coupled Compact Objects (C3Os)

2.1 Astrophysical black holes

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

2. Cosmologically Coupled Compact Objects (C3Os)

- 2.1 Astrophysical black holes
- 2.2 Cosmological energy shifts

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

2. Cosmologically Coupled Compact Objects (C3Os)

- 2.1 Astrophysical black holes
- 2.2 Cosmological energy shifts
- 2.3 Single parameter cosmological coupling

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

2. Cosmologically Coupled Compact Objects (C3Os)

- 2.1 Astrophysical black holes
- 2.2 Cosmological energy shifts
- 2.3 Single parameter cosmological coupling

3. Results

3.1 Example of coupling k = 0.5

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

2. Cosmologically Coupled Compact Objects (C3Os)

- 2.1 Astrophysical black holes
- 2.2 Cosmological energy shifts
- 2.3 Single parameter cosmological coupling

3. Results

- 3.1 Example of coupling k = 0.5
- 3.2 Physics behind the altered distributions

1. Interpretation of BH spacetimes

- 1.1 Kerr Metric
- 1.2 Robertson-Walker Metric
- 1.3 Kerr in the context of Robertson-Walker

2. Cosmologically Coupled Compact Objects (C3Os)

- 2.1 Astrophysical black holes
- 2.2 Cosmological energy shifts
- 2.3 Single parameter cosmological coupling

3. Results

- 3.1 Example of coupling k = 0.5
- 3.2 Physics behind the altered distributions
- 3.3 Constraint of k with other phenomena

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

Cosmologically Coupled Compact Objects

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

Where

Cosmologically Coupled Compact Objects 0000

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

Where

- $\eta_{\mu\nu}$ is static spacetime
- \blacktriangleright R_s encodes mass

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

Where

- $\eta_{\mu\nu}$ is static spacetime
- ► R_s encodes mass
- ▶ A^2z^2 encodes spin

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

Where

- $\eta_{\mu\nu}$ is static spacetime
- ► R_s encodes mass
- ▶ A^2z^2 encodes spin
- $\blacktriangleright \ r({\bf x})$ is a generalized radius

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

At large distances from the hole

$$\lim_{r(\mathbf{x})\to\infty}g_{\mu\nu}=\eta_{\mu\nu}$$

 \therefore Kerr's object exists in a static universe

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

A spinning BH is modelled with the Kerr metric

$$g_{\mu\nu} := \eta_{\mu\nu} + \frac{R_s r(\mathbf{x})^3 \ell_{\mu} \ell_{\nu}}{r(\mathbf{x})^4 + A^2 z^2}$$

At large distances from the hole

$$\lim_{r(\mathbf{x})\to\infty}g_{\mu\nu}=\eta_{\mu\nu}$$

 \therefore Kerr's object exists in a static universe

But we don't exist there...

Cosmologically Coupled Compact Objects 0000

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

K.S. Croker et al. 2021 ApJL 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects

Robertson-Walker Metric

Size of universe measured with the Robertson-Walker (RW) metric

$$g_{\mu\nu} := a^2(\eta)\eta_{\mu\nu}$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects

Robertson-Walker Metric

Size of universe measured with the Robertson-Walker (RW) metric

$$g_{\mu\nu}:=a^2(\eta)\eta_{\mu\nu}$$

Einstein's equations predict growth

$$\frac{\mathrm{d}^2 a}{\mathrm{d}\eta^2} = \frac{4\pi G}{3} a^3 \left\langle \rho - 3\mathcal{P} \right\rangle_{\mathcal{V}}.$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes $\circ \circ \bullet \circ$

Cosmologically Coupled Compact Objects

Robertson-Walker Metric

Size of universe measured with the Robertson-Walker (RW) metric

$$g_{\mu\nu}:=a^2(\eta)\eta_{\mu\nu}$$

Einstein's equations predict growth

$$\frac{\mathrm{d}^2 a}{\mathrm{d}\eta^2} = \frac{4\pi G}{3} a^3 \left< \rho - 3\mathcal{P} \right>_{\mathcal{V}}.$$

Where

►
$$a(\text{now}) := 1$$

University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects

Robertson-Walker Metric

Size of universe measured with the Robertson-Walker (RW) metric

$$g_{\mu\nu}:=a^2(\eta)\eta_{\mu\nu}$$

Einstein's equations predict growth

$$\frac{\mathrm{d}^2 a}{\mathrm{d}\eta^2} = \frac{4\pi G}{3} a^3 \left\langle \rho - 3\mathcal{P} \right\rangle_{\mathcal{V}}.$$

Where

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Kerr's object (far away, forever)

 $g_{\mu\nu}^{\rm Kerr} \to \eta_{\mu\nu}$

vs. the expanding universe (everywhere, forever)

 $g^{\sf RW}_{\mu\nu}:=a^2(\eta)\eta_{\mu\nu}$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* <u>921 22</u>

Kerr's object (far away, forever)

$$g_{\mu\nu}^{\rm Kerr} o \eta_{\mu\nu}$$

vs. the expanding universe (everywhere, forever)

$$g_{\mu\nu}^{\mathsf{RW}} := a^2(\eta)\eta_{\mu\nu}$$

Taylor expand $a^2(\eta)$ about some η_0

$$a^{2}(\eta) = a^{2}(\eta_{0}) + 2a\Delta\eta \frac{\mathrm{d}a}{\mathrm{d}\eta}\bigg|_{\eta=\eta_{0}} + \cdots$$

and substitute ...

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Kerr's object (far away, forever)

$$g_{\mu\nu}^{\rm Kerr} o \eta_{\mu\nu}$$

vs. the expanding universe (everywhere, near η_0)

$$g_{\mu\nu}^{\mathsf{RW}} = a^2(\eta_0) \left[1 + 2Ha\Delta\eta \Big|_{\eta=\eta_0} + \cdots \right] \eta_{\mu\nu}$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Kerr's object (far away, forever)

$$g_{\mu\nu}^{\rm Kerr} o \eta_{\mu\nu}$$

vs. the expanding universe (everywhere, near η_0)

$$g_{\mu\nu}^{\rm RW} = a^2(\eta_0) \left[1 + 2Ha\Delta\eta \bigg|_{\eta=\eta_0} + \cdots \right] \eta_{\mu\nu}$$

The constant factor is just a unit redefinition ...

Kerr's object (far away, forever)

$$g_{\mu\nu}^{\rm Kerr} o \eta_{\mu\nu}$$

vs. the expanding universe (everywhere, near η_0)

$$g_{\mu\nu}^{\rm RW} = \eta_{\mu\nu} + O\left(2\Delta\eta H a \bigg|_{\eta=\eta_0}\right)$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Kerr's object (far away, forever)

 $g_{\mu\nu}^{\rm Kerr} \to \eta_{\mu\nu}$

vs. the expanding universe (everywhere, near η_0)

$$g_{\mu\nu}^{\mathsf{RW}} = \eta_{\mu\nu} + O\left(2\Delta\eta H a \bigg|_{\eta=\eta_0}\right)$$

 \therefore the Kerr metric is an excellent approximation to something else, on timescales short compared to 1/Ha

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes

Cosmologically Coupled Compact Objects • 000 Results 00000

Astrophysical black holes

Realistic solutions to Einstein's equations are difficult. Known solutions, however, provide clues...

University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Croker, Zevin, Farah, Nishimura, Tarlé

K.S. Croker et al. 2021 ApJL 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects • 000 Results 00000

Astrophysical black holes

Realistic solutions to Einstein's equations are difficult. Known solutions, however, provide clues...

 Jacques & Faraoni (2007): non-spinning solutions with cosmological mass growth

University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects • 000

Results 00000

Astrophysical black holes

Realistic solutions to Einstein's equations are difficult. Known solutions, however, provide clues...

 Jacques & Faraoni (2007): non-spinning solutions with cosmological mass growth

Significant: explicit counterexamples to a common misunderstanding that such effects cannot occur in GR

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects • 000 Results 0000<u>0</u>

Astrophysical black holes

Realistic solutions to Einstein's equations are difficult. Known solutions, however, provide clues...

 Jacques & Faraoni (2007): non-spinning solutions with cosmological mass growth

In fact, we've seen this before ...

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Interpretation of BH spacetimes 0000

Cosmologically Coupled Compact Objects $0 \bullet 00$

Results 00000

Known cosmological energy shifts

Recall that we have defined

 $a(\eta):={\rm linear}$ scale of the universe

B Raisin bread dough after rising

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Cosmologically Coupled Compact Objects

Known cosmological energy shifts

Recall that we have defined

 $a(\eta):={\rm linear}$ scale of the universe

The volume of the universe increases as the cube of this linear scale

 $\mathcal{V} \propto a^3$.

B Raisin bread dough after rising

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Cosmologically Coupled Compact Objects $0 \bullet 00$

Known cosmological energy shifts

Recall that we have defined

 $a(\eta) :=$ linear scale of the universe

The volume of the universe increases as the cube of this linear scale

 $\mathcal{V} \propto a^3$.

If we do not create new objects, the **number density** of objects in $\mathcal V$ must decrease

$$\frac{\mathrm{d}N}{\mathrm{d}\mathcal{V}} \propto \frac{1}{a^3}$$

B Raisin bread dough after rising

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$d \log \rho = d \log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$d\log\rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

For an ensemble of identical objects, the energy density is a sum

$$\rho := \sum_{i} E_{i} \frac{\mathrm{d}N}{\mathrm{d}\mathcal{V}}$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Conservation of stress-energy (assuming constant \mathcal{P}/ρ)

$$d\log\rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

For an ensemble of identical objects, the energy density is a sum

$$\rho := \sum_{i} E_{i} \frac{\mathrm{d}N}{\mathrm{d}\mathcal{V}}$$

 \blacktriangleright E_i is the energy of the i^{th} object

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 ApJL 921 22

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$d\log\rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

For an ensemble of identical objects, the energy density is a sum

$$\rho := \sum_{i} E_{i} \frac{\mathrm{d}N}{\mathrm{d}\mathcal{V}}$$

- E_i is the energy of the i^{th} object
- dN/dV is the number density of objects

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$d\log \rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Nonrelativistic objects: $\mathcal{P} = 0 \implies \rho \propto 1/a^3$

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$d\log \rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Nonrelativistic objects: $\mathcal{P} = 0 \implies \rho \propto 1/a^3$

$$\frac{1}{a^3} \propto \sum_i E_i \frac{1}{a^3}$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Conservation of stress-energy (assuming constant \mathcal{P}/ρ)

$$d\log\rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Nonrelativistic objects: $\mathcal{P} = 0 \implies \rho \propto 1/a^3$

$$\frac{1}{a^3} \propto \sum_i E_i \frac{1}{a^3}$$

 $\therefore E_i$ constant

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$\mathrm{d}\log\rho = \mathrm{d}\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Photons: $\mathcal{P} = \rho/3 \implies \rho \propto 1/a^4$

$$\frac{1}{a^4} \propto \sum_i E_i \frac{1}{a^3}$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$\mathrm{d}\log\rho = \mathrm{d}\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Photons: $\mathcal{P} = \rho/3 \implies \rho \propto 1/a^4$

$$\frac{1}{a^4} \propto \sum_i E_i \frac{1}{a^3}$$
$$\therefore E_i \propto 1/a$$

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22

Conservation of stress-energy (assuming constant $\mathcal{P}/
ho$)

$$d\log\rho = d\log a^{-3(1+\mathcal{P}/\rho)}$$

describes how the energy density ρ changes with a.

Photons: $\mathcal{P} = \rho/3 \implies \rho \propto 1/a^4$

$$\frac{1}{a^4} \propto \sum_i E_i \frac{1}{a^3}$$

The effect is only visible in strongly relativistic settings...

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* <u>921 22</u>

Hypothesis: astrophysical BHs are cosmologically coupled, like photons. Unlike photons, however, they *gain* mass-energy in time

$$m(a) := m_0 \left(\frac{a}{a_i}\right)^k \qquad a \ge a_i.$$

Hypothesis: astrophysical BHs are cosmologically coupled, like photons. Unlike photons, however, they *gain* mass-energy in time

$$m(a) := m_0 \left(\frac{a}{a_i}\right)^k \qquad a \ge a_i.$$

Here

• m_0 is the BH mass at formation from stellar collaspe

Hypothesis: astrophysical BHs are cosmologically coupled, like photons. Unlike photons, however, they *gain* mass-energy in time

$$m(a) := m_0 \left(\frac{a}{a_i}\right)^k \qquad a \ge a_i.$$

Here

• m_0 is the BH mass at formation from stellar collaspe

► *a_i* is the scale factor at the time of stellar collapse

Hypothesis: astrophysical BHs are cosmologically coupled, like photons. Unlike photons, however, they *gain* mass-energy in time

$$m(a) := m_0 \left(\frac{a}{a_i}\right)^k \qquad a \ge a_i.$$

Here

- m_0 is the BH mass at formation from stellar collaspe
- a_i is the scale factor at the time of stellar collapse
- \blacktriangleright k is the strength of the cosmological coupling

Cosmologically Coupled Compact Objects

Example coupling with k = 0.5

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Cosmologically Coupled Compact Objects

Example coupling with k = 0.5

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Cosmologically Coupled Compact Objects

Example coupling with k = 0.5

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022

Physics behind the altered distributions

Cosmological mass growth also causes angular-momentum preserving orbital decay

- Systems with initially negligable radiative losses can now merge
- ▶ Depending on k, semimajor axes ≤ 10⁴ AU can now visibly merge, c.f. ≤ 10⁻¹AU for BHs
- Tight binaries are culled at high redshift with low mass, and so less visible

Constraint of k with quasars

Crude upper bounds on k can be placed

- ▶ Observation: SMBH in quasars of $\sim 10^9 M_{\odot}$ at z = 6
- \blacktriangleright Non-observation: SMBH in excess of $\sim 10^{11} M_{\odot}$ today

 $\pm 0.4 \text{ dex} \implies k \lesssim 3$

Consistent with theoretical upper bound from DEC

Conclusions

- Placing the Kerr idealization into a realistic universe allows for new dynamics in time
- Cosmological coupling in relativistic objects is theoretically and observationally well-motivated
- Cosmological coupling in astrophysical BHs eases tension between stellar population synthesis and LIGO–Virgo observations
- Coupling strength can be measured in many ways

Introduction	Interpretation of BH spacetimes	Cosmologically Coupled Compact Objects	Results
			00000

Croker, Zevin, Farah, Nishimura, Tarlé K.S. Croker et al. 2021 *ApJL* 921 22 University of Hawai'i P&A, HEP Journal Club, January 18th, 2022