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1 Introduction

Unification of the Standard Model (SM) gauge groups into a single grand unified theory
(GUT) remains an attractive new-physics scenario: It has the potential to (i) provide an
explanation for the seemingly coincidental near-equality of SM gauge couplings at the
high-energy scale MGUT ∼ 1015 GeV, see e.g. [1–3]; (ii) unify the apparent plethora of
fermionic representations into a single GUT representation [4]; thereby (iii) account for
heavy right-handed sterile neutrinos [5] with a suitable see-saw mechanism [5, 6]; and, in
turn, (iv) offer a scenario for leptogenesis, see e.g. [7–9].

Yet the explanatory power of a GUT – manifest in relations among SM couplings – comes
with the caveat of having to construct a viable mechanism to break the large gauge group
in just the right way such as to retain the SM. Mirroring the successful Higgs-mechanism
in the SM, the most common way to reduce the unified gauge group to the SM is via
spontaneous symmetry breaking in a suitable scalar potential [5]. Most GUT analyses to
date simply assume that all group-theoretically possible breaking chains can be realised by
some – potentially contrived and complicated – scalar potential. Oftentimes, the latter is
not explicitly specified. Indeed, such potentials remain largely arbitrary without specific
knowledge about microscopic boundary conditions, for instance, at the Planck scale. As
a result, the plethora of SM parameters is effectively traded for a plethora of admissible
breaking potentials. In particular, currently viable GUTs require more free parameters than
the SM itself1. In contrast to the Yukawa and gauge couplings, the (quartic) couplings
entering the GUT potential are not directly constrained by the experimental data.

Several quantum-gravity scenarios hold the promise to predict Planck-scale boundary
conditions, both on the gauge-Yukawa sector and the scalar potential, for the asymptotic
safety investigations, see e.g. [10, 11] and for the string theory ones, see e.g. [12–15].
Naturally, such a link would benefit GUT model builders and QG phenomenologists alike:

• GUTs would aid QG phenomenology: The requirement of viable initial conditions
promises to indirectly constrain the landscape of possible QG scenarios.

1In particular the minimal viable SO(10) with 10H ⊕ 126H ⊕ 45H possess roughly 20 couplings in the
scalar potential only [5].
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• QG would aid GUT model building: Any predictive QG scenario will, in turn, pre-
dict/constrain the Planckian parameter space and thereby may exclude (i.e., be
incompatible with) specific GUTs.

To build this link, progress on both ends is required: On the one hand, Planck-scale
predictions of QG scenarios have to be solidified. On the other hand, viable Planck-scale
initial conditions have to be carved out specifically.

In the present work, we focus on the GUT side of progress. In particular, we point
out that the requirement of viable radiative symmetry breaking – or rather the absence
of non-viable radiative symmetry breaking – places strong constraints on the underlying
Planck-scale initial conditions.
To do so, we treat the GUT as an effective field theory (EFT). The respective grand-unified
effective field theory (GUEFT) is fully specified by its symmetry group GGUT – including a
local gauge group G(local)GUT as well as potential additional global symmetries G(global)GUT – and
the set of fermionic as well as scalar representations FGUT and SGUT, respectively. The
respective EFT action includes all possible symmetry invariants that can be constructed
from the gauge and matter fields. The initial conditions for the couplings dressing these
symmetry invariants specify an explicit realisation of the GUEFT.

We then assume that some (in-principle unknown) UV dynamics provides said initial
conditions of the GUEFT at some ultraviolet (UV) scale. In the following, we attribute that
scale to the Planck scale and hence the UV dynamics to QG. Still, the general framework
presented here applies more widely.

Once the initial conditions are specified at the Planck scale MPl, the renormalisation
group (RG) equations evolve each such realisation towards lower energies, in particular
down to observable electroweak scale where (some of) the couplings need to be matched
to experiment. Physically, the change of couplings describes the field-theoretical process
of integrating out degrees of freedom at scale k. Formally, the RG flow is defined by the
β-functions, i.e.,

βci = k
∂

∂k
ci . (1.1)

Here, we focus solely on the perturbative regime. This allows us to make use of (i)
the computational toolkit PyR@TE 3 [16] to determine the full set of perturbative β-
functions and (ii) the well-developed perturbative techniques for multidimensional effective
potentials [17] (see also [18]). We also mention that if (i) and (ii) can be realised in a
non-perturbative RG scheme, the developed framework can, in principle, be extended.
However, we leave such application and, in particular, the proper inclusion of gravitational
fluctuations and thus any trans-Planckian dynamics at k > MPl for future work.

In this perturbative GUEFT setup, we will analyse, in particular, the question of
radiative symmetry breaking by use of a (more generally applicable) blueprint.

The paper is organized as follows. In Sec. 2, we present the abstract blueprint for how
to place phenomenological constraints on the parameter space at MPl. In particular, our
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blueprint encompasses a novel set of systematic constraints on a viable (perturbative) scalar
potential. In the Sec 3, we review the required and previously mentioned (see (i) and (ii) in
the paragraph above) perturbative techniques. In Sec. 4 we focus on a particular minimal
SO(10) model. We discuss the possible breaking chains, including those that lead to the SM
(admissible) but also many that do not (non-admissible). In Sec. 5, we present the explicit
results for said model. In particular, we demonstrate how the Planckian parameter space
is constrained with each individual constraint in the blueprint. In Sec. 6, we close with
a wider discussion of our results and an outlook on future work. In particular, we briefly
comment on how to (i) extend our results to a GUEFT with a realistic Yukawa sector and
(ii) eventually connect these to QG scenarios that may set the Planckian initial conditions.
Several technical details are delegated into appendices. The full form of the beta functions
is given in App. E.

2 The blueprint: How to constrain grand-unified effective field theories

The following section can be read in two ways: either as a physical description of the
methodology applied to the specific SO(10) models in this paper; or as a more general
blueprint applicable to any grand-unified effective field theory (GUEFT).

We define a GUEFT by its symmetry group GGUT – including a local gauge group
G(local)GUT as well as potential additional global symmetries G(global)GUT – and the set of fermionic
as well as scalar representations FGUT and SGUT, respectively. For instance, the two models
that we will investigate in Sec. 5 as an explicit example, are denoted by{

G(local)GUT , FGUT, SGUT

}
=
{
SO(10), 16

(i)
F , 45H

}
, (see Sec. 5.1) (2.1){

G(local)GUT , FGUT, SGUT

}
=
{
SO(10), 16

(i)
F , 16H ⊕ 45H

}
. (see Sec. 5.2) (2.2)

Herein, i = 1, 2, 3 denotes a family index. The models at hand do not exhibit additional
global symmetries.
The purpose of the following blueprint is to constrain the possibility that such a GUEFT is
a UV extension of the SM. Note that we distinguish the notions of UV extension and UV
completion. By UV extension of the SM, we refer to some high-energy EFT which contains
the SM at lower scales. In particular, we do not demand that the UV extension itself is
UV-complete, i.e., extends to arbitrarily high energies without developing pathologies. By
UV completion of the SM, we refer to a UV extension which moreover is UV-complete.

In principle, the respective EFT action includes all possible symmetry invariants that
can be constructed from the gauge and matter fields. For this work, however, we will focus
only on the marginal couplings only. This amounts to restricting the EFT-analysis to the
perturbative regime around the free fixed point. Close to the free fixed point, canonically
irrelevant couplings will be power-law suppressed.
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Moreover, we omit potentially sizeable mass terms. In the presence of mass terms,
the following constraints have to be re-interpreted but are nevertheless of relevance for
phenomenology. We comment on this at the very end of this section.

In consequence, the GUEFT is parameterised by the initial conditions of all its marginal
couplings at an a priori unknown high-energy cutoff scale kcutoff. In the following, we will
tentatively identify the cutoff scale with the Planck scale, i.e., kcutoff = MPl.

In this setup, we first focus on a set of constraints in the scalar sector. These arise from
radiative symmetry breaking and are necessary but not sufficient for the GUEFT to be a
UV extension of the SM.

(I.a) We demand tree-level stability at k = MPl.

(I.b) We demand the absence of Landau poles between the first symmetry-breaking scale
MGUT and k = MPl. (Alternatively, one may define a perturbativity criterion and
demand that the GUEFT remains perturbative between MGUT and k = MPl.)

(I.c) We demand that the deepest vacuum expectation value (vev) induced by radiative
symmetry breaking, is admissible, i.e., remains invariant under the Standard Model
gauge group GSM ⊂ G

(local)
GUT .

Each of these necessary conditions may be applied on its own to constrain the set of initial
conditions at k = MPl. Applying the constraints in the above order is most efficient as we
will explicitly demonstrate in Sec. 5.

On top of these constraints on the scalar potential, one may apply more commonly
addressed phenomenological constraints on the gauge-Yukawa sector []. More precisely:

(II.a) We demand gauge unification and a sufficiently long lifetime of the proton to avoid
experimental proton-decay bounds, cf [] for previous work.

(II.b) We demand a viable Yukawa sector. (realising a viable Yukawa sector is in itself a
very non-trivial question [15, 19, 20].)

The necessary conditions (I) in the scalar sector and (II) in the gauge-Yukawa sector can, in
principle, depend on each other2. Ideally, one would thus want to include the gauge and
Yukawa couplings in the set of random initial conditions and apply (I) and (II) simultaneously.
Alternatively, we fix the gauge and Yukawa couplings to approximate phenomenological
values, see [5, 19, 21, 22]. Subsequently, we verify that the constraints which we obtain from
(I) are not significantly altered when varying initial conditions in the gauge-Yukawa sector.

2Interdependence of (I) and (II) occurs not only via higher-loop corrections. For instance, the gauge
coupling will impact the radiative symmetry-breaking scale. At the same time, the symmetry-breaking scale
will impact the RG flow of the gauge couplings, even at 1-loop order.
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The above two sets of constraints can be viewed as necessary consistency constraints
for a GUEFT to be a viable UV extension of the SM. In that sense, they realise a set of
exclusion principles in a top-down approach to grand unification.
In addition, one may specify an underlying UV completion. This extends the GUEFT
to arbitrarily high scales above k = MPl and – within each specific UV-complete model –
typically results in additional constraints.

(III) Strong additional constraints may arise from demanding that the initial conditions can
arise from a specific assumption about the transplanckian theory, i.e., from a specific
model of or assumption about quantum gravity.

We discuss the significance of such constraints alongside existing literature as part of the
conclusions in Sec. 6. An explicit implementation is left to future work.

As promised, we come back to the significance of sizeable scalar mass terms. Negative
mass terms provide an independent mechanism for symmetry breaking in any otherwise
stable potential. At the same time, mass terms are relevant couplings and thus entirely
unconstrained in the perturbative range. Hence, we caution that the inclusion of mass terms
can partially invalidate the the above constraints: In particular, initial conditions which are
excluded because they break to a non-admissible vacuum, cf. (I.c), may actually be viable
due to sizeable mass terms.

Two comments are in order. First, there is an intrinsic interest to studying models
without bare mass terms. However, such arguments are oftentimes based on some notion of
naturalness, for which we see no fundamental rationale.

Second, and more importantly, mass terms do not invalidate the radiative symmetry-
breaking scale. For instance, assume that a specific realisation of a GUEFT radiatively
breaks to a non-admissible vacuum at MGUT

(radiative). An additional mass-term induced
breaking scale MGUT

(mass) may in principle break to an admissible vacuum. However,
there remains a constraint that this potentially viable breaking has to then occur at
MGUT

(mass) > MGUT
(radiative). In turn any such MGUT

(mass) > MGUT
(radiative) may be in

conflict with other observational constraints such as the ones on the gauge-Yukawa sector,
cf. (II) above.

Nevertheless, we think that the inclusion of mass terms poses an important future
extension of our work.

3 Methodology: RG-flow, effective potential, and breaking patterns

3.1 Renormalisation group-improved 1-loop potential

In this work we are interested in the radiative minima of the potential generated due to
the renormalisation group flow of the quartic couplings. Hence the renormalisation group
equations (RGEs) constitute the principal tool in our analysis. The schematic form of the
one-loop RGEs are given in the seminal papers [23–25], see also the recent discussion [26–28].
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In absence of mass terms in the tree-level potential, any non trivial minimum must be
generated by higher order corrections to the scalar potential. The dependence of loop
corrections on the arbitrary renormalisation scale can be alleviated using techniques of
RG-improvement of the scalar potential. Such techniques generally allow for a better
approximation of the all-order quantum potential, already in the one-loop truncation. For
these reasons, we have used in this work the RG-improved 1-loop potential to study the
breaking patterns of a GUT model, in a formalism that we now briefly review.

Considering a gauge theory with a scalar multiplet noted φ, and using the conventions
of [17], the one-loop contributions to the effective potential can be put in the form

V (1) = A + B log
ϕ2

µ2
0

(3.1)

where µ0 is the arbitrary renormalisation scale and where ϕ =
√
φiφi. The quantities A

and B receive contributions from the scalar, gauge and Yukawa sectors of the theory. In the
MS scheme and working in the Landau gauge, they may be expressed as

A =
1

64π2

∑
i=s,g,f

niTr

[
M4
i

(
log

M2
i

ϕ2
− Ci

)]
, (3.2)

B =
1

64π2

∑
i=s,g,f

niTr
(
M4
i

)
. (3.3)

where the numerical constants ni and Ci take the values

ns = 1, ng = 3, nf = −2,

Cs =
3

2
, Cg =

5

6
, Cf =

3

2
,

(3.4)

and where Ms,g,f respectively stand for the field-dependent mass matrices of the scalars,
gauge bosons and fermions of the model. The first two matrices can be straightforwardly
computed once the scalar potential and the gauge generators of the scalar representations
have been fixed: (

M2
s

)
ij

=
∂2V (0)

∂φi∂φj
(3.5)(

M2
g

)
AB

= g2 {TA, TB}ij φ
iφj (3.6)

The 45H and 16H ⊕ 45H models considered in this work contain no Yukawa interactions,
hence the Mf mass matrix will be taken to vanish.

The dependence of V (1) on the renormalisation scale µ0 is an artifact of working at fixed
order in perturbation theory, and introduces arbitrariness in the computations. In some
circumstances, simple prescriptions on the value of µ0 may be given that are appropriate
for computations involving the quantum potential. Such prescriptions are in particular
suitable for single-scale models, thus giving a reasonable approximation of the effective
potential around this one scale. For computations involving a wider range of energy scales,
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or in theories with multiple characteristic scales (e.g. several vevs and/or masses, possibly
spanning over orders of magnitude), one inevitably encounters large logarithm. Various
renormalisation group techniques were developed to resum such large logarithms (see e.g.
[29–36]), with the aim of yielding a well-behaved quantum potential for multi-scale theories
and/or over large energy ranges. Such a procedure is generally referred to as renormalisation
group improvement of the scalar potential.

The SO(10) model considered in this work (and generally any GUT model) enters in
the category of multi-scale theories, requiring an appropriate procedure of RG-improvement.
Here we briefly review the method developped in [17] and further extended in [18] in the case
of classically scale invariant potentials. The starting point is to consider the Callan-Symanzik
equation satisfied by the all-order quantum potential, stating that the total derivative of
the effective potential with respect to the renormalisation scale vanishes:

dV eff

d logµ0
=

(
∂

∂ logµ0
+
∑
i

β (gi)
∂

∂gi
− φiγij ∂

∂φj

)
V eff = 0 . (3.7)

The above relation describes the invariance of the quantum potential on the renormalisation
scale, given that the couplings of the theory are evolved according to their β-functions, and
the field strength renormalisation values according to their anomalous dimension matrix
γ. Following [17, 18] and using (3.7), we may simultaneously promote the RG-scale µ0 to
a field-dependent quantity µ(φi), and the couplings and fields to µ-dependent quantities.
Formally, we have

µ0 −→ µ(φi) ,

λ −→ λ
(
µ(φi)

)
,

φ −→ φ
(
µ(φi)

)
.

(3.8)

The cornerstone of the RG-improvement procedure presented in [17] is to note that for
each point in the field space, and as long as perturbation theory holds, there exists a
renormalisation scale µ∗ such that the one-loop corrections V (1) vanish3:

V (1)
(
φi, λi;µ∗

)
= A

(
φi(µ∗), λ

i(µ∗)
)

+ B
(
φi(µ∗), λ

i(µ∗)
)

log
ϕ2

µ2
∗

= 0 . (3.9)

The above relation gives the implicit definition of the field-dependent scale µ∗(φi), and is
shown in [17] to allow for a resummation of a certain class of logarithmic contributions.
Going on, the full 1-loop effective potential is simply given by its tree-level contribution,
with the couplings and fields are evaluated at the scale µ∗:

V eff(φi) = V (0)
(
φi;µ∗(φ

i)
)
. (3.10)

That the RG-improved effective potential takes its tree-level form provides valuable insight on
the conditions of radiative symmetry breaking in classically scale-invariant models [17, 18, 37].

3In presence of negative eigenvalues in the mass matrices, one may instead require the real part of the
one-loop corrections to vanish.
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In particular, a necessary condition for symmetry breaking to occur is that the tree-level
stability conditions of the scalar potential must be violated at some scale along the RG-flow.
As illustrated in the next sections, this observation crucially allows to determine whether
the breaking of the SO(10) symmetry towards a specific subgroup will happen at all, given
some initial conditions for the quartic couplings at the high energy scale.

3.2 Minimisation of the RG-improved potential

In order to identify the breaking patterns of the model, one needs to evaluate the depth of
the RG-improved potential at the minimum for each relevant vacuum configuration. The set
of stationary point equations of the RG-improved potential are derived in App. A, and would
in principle need to be solved numerically in order to determine the position of its global
minimum. Such a numerical minimisation procedure, however, can be computationally very
costly and therefore rather inappropriate in the context of this work, where a scan over a
large number of points is to be performed. Instead, we propose in this section a simple
procedure allowing to estimate (rather accurately) the position and depth of the minimum
of the RG-improved potential.

In App. A, we derive the radial stationary point equation (A.9) satisfied by the RG-
improved potential at a minimum, in the O(~) approximation:

4V eff + 2B = 0,
dA
dt
≈ 0 and

dB
dt
≈ 0 . (3.11)

As mentioned in App. A.1, the quantity B must be strictly positive at a minimum, thus
implying

V eff < 0 . (3.12)

Recalling that for all field values, V eff takes its classically scale invariant tree-level form,
this means in turn that the tree-level stability conditions must not hold at the RG-scale
µmin
∗ , defined such that

∂V eff

∂〈φ〉i
(
〈φ〉i;µmin

∗
(
〈φ〉i

) )
= 0 and V (1)

(
〈φ〉i;µmin

∗
(
〈φ〉i

) )
= 0 . (3.13)

More concretely, µmin
∗ is the value of the RG-improved scale µ∗ evaluated at the vacuum 〈φ〉.

Letting µ0 be some arbitrary high scale at which the tree-level potential is assumed to be
stable, one can identify a scale µGW characterising the breaking of tree-level stability, such
that

µmin
∗ < µGW < µ0. (3.14)

Hence at the RG-scale µGW the tree-level potential (without RG-improvement) develops
flat directions, along which a minimum will be radiatively generated through the Gildener-
Weinberg mechanism [38], see also App. A.2. A first important observation is that µGW

gives an upper bound on the value of µ∗ at the minimum, as well as a rough estimate of it.
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This bound may be further refined observing that an additional scale µ̃ can be identified, at
which the quantity Ṽ (0) defined as

Ṽ (0) ≡ V eff +
1

2
B (3.15)

develops flat directions, see App. A. Since B > 0 near the minimum, one has

µmin
∗ < µ̃ < µGW , (3.16)

so µ̃ provides an improved upper bound for µmin
∗ . In practice, the former scale provides in

most cases a remarkably accurate estimation of µmin
∗ , for reasons detailed and exemplified

in Appendix A. Based on this observation, we have used for the purposes of the present
analysis a simplified procedure to identify and characterise the minima of RG-improved
potentials in an algorithmic fast and efficient way — the only other alternative being the
minimisation via numerical methods, increasingly costly for vacuum structures with many
vevs. For a given vacuum configuration, this minimisation procedure may be summarised as
follows:

1. Starting with random values for the quartic couplings at some high scale µ0, the stability
of the tree-level potential is asserted and unstable configurations are discarded.

2. Evolution of the quartic couplings according to their one-loop β-functions is performed
down to some lower scale µ1. A natural choice for this scale is µ1 ≈ 1011 GeV, where
the gauge coupling usually runs into a Landau pole4.

3. The scale µ̃ at which Ṽ (0) develops flat directions is identified. To determine it in
practice, one only needs to assert the tree-level stability conditions at each integration
step over the considered energy range.

4. At the scale µ̃, depending on the considered vacuum structure, the flat direction ~n is
identified (see Appendix (B)). Along this flat direction, the field values take the form

φ = ϕ~n (3.17)

5. The unique value of 〈ϕ〉 such that

V (1) (〈ϕ〉~n; µ̃) = 0 (3.18)

is identified. The field vector 〈φ〉 = 〈ϕ〉~n constitutes an estimation of the exact position
of the minimum.

6. Finally, the depth of the RG-improved potential at the minimum, i.e. the quantity

V eff(〈φ〉) = V (0)(〈φ〉); µ̃) (3.19)

is evaluated.
4The precise value of µ1 is anyways rather arbitrary, since in practice one observes either the breakdown

of SO(10) or the occurrence of Landau poles along the way from µ0 down to µ1.
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In this form, the above procedure is essentially equivalent to a Gildener-Weinberg minimi-
sation (see App. A.2). However, as explained in App. A.3, it is can be straightforwardly
extended to include O(~2) corrections characteristic of the 1-loop RG-improvement proce-
dure. The accuracy of the this procedure compared to a full-fledged numerical minimisation
of the RG-improved potential is studied in Appendix A.4. From an algorithmic point of view,
our method proves remarkably more efficient, in particular for multidimensional vacuum
manifolds. The reason is rather simple: Here, one avoids the numerical minimisation of a
multivariate function, whose evaluation at a point φ ∈ RN is itself rather costly (evaluating
the potential at some given field value involves a root-finding algorithm to determine the RG-
improved scale µ∗). Instead, two 1-dimensional numerical scans are performed, respectively
to find the value of µ̃ at step 3, then the value of 〈ϕ〉 at step 5.

3.3 Breaking patterns triggered by the RG-flow

As stated above, the spontaneous breakdown of SO(10) — i.e. the occurrence of a non-trivial
minimum of the RG-improved potential — is triggered around the RG-scale at which the
tree-level potential turns unstable. While the knowledge of necessary stability conditions
allows to discard points from the parameter space for which the scalar potential is clearly
unstable (see step 1. in the minimisation procedure described above), the determination
of the breaking patterns of the model requires additional information. In particular, given
some vacuum manifold, there are in general several qualitatively different ways of violating
the stability conditions (see App. B). When the RG-improved potential develops a non
trivial minimum, the resulting pattern of symmetry breaking depends in fact on the way
the stability conditions get violated along the RG flow. More precisely, the set of stability
conditions for a given vacuum structure can in general be expressed as the conjunction of n
individual constraints:

S = S1 ∧ · · · ∧ Sn . (3.20)

Defining S̄ as the condition of an unstable potential, one clearly has

S̄ = S̄1 ∨ · · · ∨ S̄n , (3.21)

and therefore the violation of any one of the Si will trigger spontaneous symmetry breaking,
in general towards different subgroups of original symmetry group. To illustrate this rather
general statement, let us consider a concrete example. Namely, for the 16 ⊕ 45 SO(10)

model considered in the next section, a possible vacuum configuration leading to a SU (5)

breaking is obtained from Eq. (4.7) in the limit ωR = ωB = ω/
√

5, χR = 0

〈V 〉SU (5) =

(
λ1 +

13

20
λ2

)
ω4 +

(
2λ8 +

5

2
λ9

)
ω2χ2 + λ6χ

4 , (3.22)
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and matches the definition of a general 2-vev vacuum manifold given in Appendix B. Directly
using the results from this appendix, we derive the following tree-level stability conditions5:

S1 : λ1 +
13

20
λ2 > 0 , (3.23)

S2 : λ6 > 0 , (3.24)

S3 : 2λ8 +
5

2
λ9 + 2

√
λ6

(
λ1 +

13

20
λ2

)
> 0 . (3.25)

With these definitions at hand, the sufficient and necessary stability condition for this
vacuum manifold is given by

S = S1 ∧ S2 ∧ S3 . (3.26)

We note in passing that (3.26) only constitutes a set of necessary conditions for the stability
of the full SO(10) potential. Starting at a RG-scale µ0 were S holds, spontaneous symmetry
breaking will occur around the scale µGW < µ0 at which any one of the Si gets violated. This
can occur in three distinct manners, generating in each case different vacuum configurations
along the flat directions appearing at µGW:

S̄1 : λ1(µGW) +
13

20
λ2(µGW) = 0 → (ω, χ) =

(
〈ω〉, 0

)
(3.27)

S̄2 : λ6(µGW) = 0 → (ω, χ) =
(
0, 〈χ〉

)
(3.28)

S̄3 :

[
2λ8 +

5

2
λ9 + 2

√
λ6

(
λ1 +

13

20
λ2

)]
(µGW) = 0 → (ω, χ) =

(
〈ω〉, λ〈ω〉

)
(3.29)

Finally, based on group theoretical arguments, the residual symmetry group can be de-
termined for each vacuum configuration. Here, S̄2 and S̄3 do generate a SU (5) minimum,
although in the former case ω vanishes. In contrast, the minimum associated with S̄1

preserves an additional U (1) gauge factor, so the residual symmetry group is SU (5)×U (1).

The above example shows how to determine the residual gauge symmetry associated
with a flat direction of the tree-level potential in a specific vacuum configuration. In addition,
one must be able to determine the location and depth of the minimum of the effective
potential. For this purpose, the procedure described in the previous section can be used
in practice, allowing to estimate the position and depth of the minimum based on the
study of the flat directions of Ṽ0. Such a procedure is reiterated for every relevant vacuum
configuration, so that a deepest minimum can be identified. The corresponding residual
symmetry gives the only allowed breaking pattern among the various subgroups initially
identified.

4 The model: minimal SO(10)

In this section, we present the specific SO(10)-GUT model to be investigated. After
constructing the corresponding tree-level scalar potential, we establish a (non-exhaustive)

5It is implicitly understood that in the definition of S3, S1 and S2 must be satisfied.
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classification of the possible breaking patterns of the model, clarifying in passing the
distinction between the standard and flipped embeddings of the Standard Model into
SU (5)×U (1) ⊂ SO(10). Our classification includes breaking patterns towards subgroups
of SO(10) that do not contain the Standard Model gauge group, allowing us in Sec. 5
to establish a novel kind of theoretical constraints on the parameters of the scalar sector.
Finally, we comment on the property of some of breaking patterns to never occur (at least
at tree-level) despite being allowed by the group-theoretical structure of the model.

4.1 SO(10) with fermionic 16F , scalar 16H and 45H

For the SO(10)-GUT the fermionic content of the Standard Model (together with right
handed neutrinos) nicely fits into one, unifying 16F spinor representation. The minimal
scalar content to reproduce the Standard Model electroweak theory is 16H ⊕ 45H . In terms
of its group-theoretical specification, the model reads

(GGUT, FGUT, SGUT) = (SO(10), 16F , 16H ⊕ 45H) , (4.1)

The Lagrangian is given by

L = LK − V, (4.2)

where the LK is the fermionic, scalar and gauge kinetic part and V is the 16H⊕45H potential.
Additionally, in order to to break the electroweak symmetry a real 10H representation is
introduced. In this case, a Yukawa interaction of the form 16F10H16F must be included
and the Lagrangian reads

L = LK + LY − V. (4.3)

We give in App. D a possible parameterisation of the most general scalar potential (and of
LY ) including scalar representations 10H⊕16H⊕45H . It should be stressed that the model
hence obtained fails to produce a viable (i.e. SM-like) fermion sector at low energies for the
simple reason that the single Yukawa matrix characterising the 16F10H16F interaction can
always be diagonalised by a redefinition of the fermion fields. The question of constructing a
minimal viable SO(10) Yukawa sector has been largely addressed in the literature [] and will
not be discussed here in detail. Nevertheless, we would like to mention that one promising
model in that regard consists of a 10H ⊕ 45H ⊕ 126H scalar sector and shares features
with the 10H ⊕ 16H ⊕ 45H model considered here, hence justifying one’s motivations to
investigate its main features despite its non-viable low-energy phenomenology6. In the
present work, we will further simplify the overall picture by omitting the 10H representation
and investigate models based on the scalar representations 16H⊕45H and 45H , respectively.

6On more pragmatic grounds, we should perhaps mention that the study of the scalar potential of the
10H ⊕ 45H ⊕ 126H model is anyways a challenging task due to the large number of gauge invariants (and
hence of scalar couplings) which can be constructed.
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In the former case, the tree-level scalar potential reduces to

V (χ, φ) =
λ1

4
Tr
(
Φ2

16

)2
+ λ2 Tr

(
Φ4

16

)
+ 4λ6 (χ†χ)2 + λ7

(
χ†+Γiχ−

)(
χ†−Γiχ+

)
+ 2λ8 (χ†χ) Tr

(
Φ2

16

)
+ 8λ9 χ

†Φ2
16χ .

(4.4)

where χ and φ respectively denote the 16H and 45H multiplets, and where all other relevant
quantities were defined in App. D.

A series of articles in the early 1980’s studying the 45H ⊕ 16H model [39–42] pointed
that the only potentially viable minima of the (tree-level) potential induce a breaking
towards either SU (5)×U (1) (which require large threshold corrections to be consistent with
gauge-coupling unification [19]) or the excluded standard SU (5). The other possible vacuum
configurations in the Pati-Salam directions (see below for more detail) are not minima of the
potential but saddle points. For this reason, the model has been disregarded for 30 years.
However, models featuring a 45H have been recently revived in [5] by showing that one-loop
quantum corrections to the potential could turn the phenomenologically preferable saddle
points into actual minima. This observation further motivates the inclusion of quantum
corrections to the scalar potential based on the formalism introduced in the previous section.

4.2 Potential breaking chains of the minimal SO(10) model

A comprehensive discussion of symmetry breaking in the minimal SO(10) model introduced
above would require one to classify all potential breaking directions allowed by group-
theoretical considerations. Here we study a subset of possible breaking patterns, yet
considerably bigger than usually studied in the literature. This includes several breaking
chains towards the Standard Model (in fact, all of the potentially viable ones) as well as
non-viable vacuum configurations that break the SO(10) towards non-SM directions. As
will become clear later, the inclusion of additional non-viable breaking patterns can only
tighten the constraints and further reduce the viable Planckian parameter space.

4.2.1 Admissible breaking patterns.

Following [22, 43], we observe that in order to break SO(10) towards the Standard Model,
the adjoint field 45H must have, up to arbitrary gauge transformations, the following vev
texture:

φij = Antidiag
(
ωR, ωR, ωB, ωB, ωB, −ωB, −ωB, −ωB, −ωR, −ωR

)
, (4.5)

where
√

3ωB and
√

2ωR respectively stand for the vevs of the (1,1,1, 0) singlet and of the
(1,1,3, 0) triplet contained in 45H , according to a 3C2L2R1B−L labelling convention. The
above vev structure generally corresponds to a breaking towards 3C2L1R1B−L, and different
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breaking chains can be conveniently recovered as particular cases:

ωR = 0 : SO(10) −→ 3C2L2R1B−L ,

ωB = 0 : SO(10) −→ 4C2L1R ,

ωR = ωB = ω5 : SO(10) −→ SU (5)×U (1)X .

As compared to [22, 43], the standard and flipped SU (5) configurations are not distinguished
at the level of the first breaking stage. The main reason is that these two breaking chains
are characterised by a different embedding of the SM gauge group within SU (5)×U (1)X ,
independently of the embedding of SU (5) × U (1)X within SO(10) (which is essentially
unique). In practice, in the case where ωR = −ωB (identified in [22, 43] as the flipped SU (5)

vacuum structure), one can always perform a gauge transformation effectively leading to
ωR → −ωR, and hence to ωB = ωR. Of course, such a transformation also affects the other
scalar multiplets, and in particular 16H . This will be discussed in more detail in what
follows.

We now turn to the vev structure of 16H . In addition to the vev of the (1,1,2,+1
2)

doublet, noted χR, we also consider a possibly non vanishing vev for the (1,−5) singlet
under SU (5)×U (1)X , noted χ5. In the language of 3C2L2R1B−L multiplets, introducing
this additional vev, χ5, simply amounts to allowing for two SM vevs in the (1,1,2,+1

2)

doublet. With these notations, and in a gauge where the adjoint field has the vev structure
(4.5), the scalar 16-plet can be put in the form7:

χ =
1√
2

(
0, −iχ5, 0, −χR, 0, χR, 0, iχ5, 0, χ5, 0, −iχR, 0, −iχR, 0, χ5

)T
. (4.6)

Injecting (4.5) and (4.6) into the expression of the scalar potential at tree-level, we find:

〈V 〉 = λ1

(
3ω2

B + 2ω2
R

)2
+
λ2

4

(
21ω4

B + 36ω2
Bω

2
R + 8ω4

R

)
+ 4λ6

(
|χR|2 + |χ5|2

)2
+ 4λ8

(
|χR|2 + |χ5|2

) (
3ω2

B + 2ω2
R

)
+ λ9

(
|χR|2 (3ωB − 2ωR)2 + |χ5|2 (3ωB + 2ωR)2

)
(4.7)

The above expression makes it clear that the vacuum structure of the 16H multiplet will
trigger the breaking towards the SM gauge group as follows:

χR = 0, χ5 6= 0 : SO(10) −→ SU (5)×U (1)X −→ SU (5) −→ GSM , (standard)

χR 6= 0, χ5 = 0 : SO(10) −→ SU (5)×U (1)X −→ GSM . (flipped)

In the latter case, namely the flipped configuration, one exactly recovers the vacuum structure
described in [22, 43] in a situation where ωR = −ωB. In the present approach, we instead
consider that both embeddings of SU (5) and SU (5)×U (1)X in SO(10) are characterised
by the relation ωR = ωB . As stated previously, the latter relation can be recovered from the
former making use of a class of gauge transformations effectively leading to

ωR ←→ −ωR , |χR| ←→ |χ5| . (4.8)
7This form is only unique up to gauge transformations preserving the vev structure of 45H .
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We insist that the two approaches are equivalent in practice. However, we believe that the
present description is conceptually more appealing since it emphasises that the standard
and flipped configurations are only triggered during the second breaking step (towards
the SM gauge group) and are therefore independent of the embedding of SU (5)×U (1)X

into SO(10). Further, the existence of SO(10) gauge transformations (4.8) has interesting
implications regarding the physical occurrence of the standard and flipped SM embeddings.
Namely, the gauge generators leading to (4.8) are clearly broken in any one of the SM vacua.
Hence at a minimum they are associated with Goldstone modes, so both minima belong
to a larger, continuous set of degenerate minima (i.e. to the same gauge orbit). Therefore,
considering that the breaking towards the SM occurs at once – i.e. corresponds to a one-step
breaking – the standard and flipped embeddings are formally equivalent. The degeneracy
will however be removed if a large hierarchy exists among the vevs, allowing to adopt an
effective description of the theory based on either SU (5) or SU (5) × U (1) over a given
energy range. Concretely, if χ5 � ωR, ωB (or equivalently χR � ωR, ωB), a first breaking
towards SU (5) is triggered at the GUT scale MGUT, and the breaking towards the SM will
be assumed to occur at an intermediate scale MI � MGUT. This case obviously corresponds
to a standard embedding, since no U (1) factor can enter in the definition of the hypercharge
generator. Conversely, a first breaking can occur at MGUT towards SU (5) × U (1), with
a subsequent breaking towards the SM occurring at the lower scale MI . In this case, one
can expect that the precise form of the scalar potential in the SU (5) × U (1) phase will
determine whether the SM embedding is standard or flipped, since RG-running effects in
the SU (5)× U (1) phase would have spoiled the SO(10) invariance of the vacuum manifold
and therefore removed the degeneracy of the minima.

4.2.2 Non-admissible breaking patterns.

In addition to admissible breaking patterns, i.e. involving intermediate gauge groups which
contain the SM, it is instructive to also consider any symmetry breaking towards other gauge
groups. Doing so, one should be able to identify and exclude some regions of the parameter
space that specifically trigger such breaking patterns. In particular, for the 16H ⊕ 45H

model, we have identified a family of non-admissible breaking patterns towards subgroups
of SO(8)× U (1) (one of the maximal subalgebras of SO(10)). Similar to the SM case, this
family of non-admissible breakings can be parametrised by a general vacuum structure for
the scalar fields 45H and 16H , namely:

φij = Antidiag
(
−ω8, ω4, ω4, ω4, ω4, −ω4, −ω4, −ω4, −ω4, ω8

)
, (4.9)

and

χ =
1√
2

(
iχ4, −iχ5, 0, 0, 0, 0 iχ4, iχ5, −χ4, χ5, 0, 0, 0, 0, χ4, χ5

)T
. (4.10)

We stress that the vev χ5 that appears in the above expression has the same origin that in
the vev texture (4.6) for the SM breakings. The choice of gauge that we have made in the
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above parameterisation makes it manifest. With these vev textures, the vacuum manifold
takes the general form

〈V 〉 = λ1

(
ω2

8 + 4ω2
4

)2
+
λ2

4

(
ω4

8 + 24ω2
8ω

2
4 + 40ω4

4

)
+ 4λ6

(
|χ4|2 + |χ5|2

)2
+ 8λ7|χ4|2|χ5|2

+ 4λ8

(
|χ4|2 + |χ5|2

) (
ω2

8 + 4ω2
4

)
+ λ9

(
|χ4|2 (ω8 − 4ω4)2 + |χ5|2 (ω8 + 4ω4)2

)
,

(4.11)

and its similarity with the SM vacuum manifold is worth noticing. When ω4, ω8 6= 0

and either χ4 6= 0 or χ5 6= 0, this vacuum manifold corresponds to a breaking towards
SU (4)×U (1). Imposing particular relations on the vevs yields larger residual gauge groups
such as SO(8)×U (1), SO(7) and SU (4)×U (1)2, as reported in Table 1.

Finally, we note that an additional vev texture for 45H was considered in this work,
leading to an alternative embedding of SU (4) × U (1)2 within SO(8) × U (1) (stemming
from the so-called triality property of SO(8)). This additional embedding only involves a
non trivial vev texture for 45H , given by

φij = Antidiag
(
ω8, ω

′
4, 0, 0, 0, 0, 0, 0, −ω′4, −ω8

)
. (4.12)

It is interesting to note that the constraint ω′4 = ω8 induces a breaking towards 4C2L1R, of
which SU (4)×U (1)2 is indeed a subgroup. As discussed in the next section, this alternative
breaking actually never occurs for group-theoretical reasons.

4.2.3 Non-observable broken phases

In a gauge theory with a specified particle content, a limited number of gauge invariants can
be formed. Allowing these invariants to get non-zero expectation values defines gauge-orbits
in the field space. Each gauge orbit is associated with a residual symmetry group (the orbit’s
little group), and the set of gauge orbits associated with the same residual symmetry forms
a stratum [44]. Specifying the scalar potential of the theory fixes the stratum structure, and
therefore the number of subgroups that can be obtained after spontaneous breakdown of the
original symmetry. Those strata (and associated phases) will be called observable if there
exists a field configuration minimising the scalar potential and leading to the spontaneous
breakdown of the gauge group towards the associated subgroup [45, 46]. In the model
considered in this work, some strata (or equivalently some broken phases) can be shown to be
non-observable at tree level. This is in particular the case of the 3C2L1R1B−L, SU (4)×U (1)2

and
[
SU (4)×U (1)2

]′ strata. For concreteness, we now provide a proof of this statement
for the 3C2L1R1B−L breaking. Let us first consider that the scalar potential includes scalar
mass couplings, and in particular the following operator:

V (0) ⊃ −1

4
µφ Tr

(
Φ2

16

)
. (4.13)

In this case, the 3C2L1R1B−L vacuum manifold reads:

V (0) = −µφ
(
3ω2

B + 2ω2
R

)
+ λ1

(
3ω2

B + 2ω2
R

)2
+
λ2

4

(
21ω4

B + 36ω2
Bω

2
R + 8ω4

R

)
. (4.14)
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Solving the stationary point equations with respect to ωB,R yields the set of solutions
(excluding the trivial solution ωB = ωR = 0)

(
ω2
B, ω

2
R

)
∈
{(

0,
µφ

4λ1 + 2λ2

)
,

(
2µφ

12λ1 + 7λ2
, 0

)
,

(
2µφ

20λ1 + 13λ2
,

2µφ
20λ1 + 13λ2

)}
.

(4.15)
These three solutions respectively belong to gauge orbits associated with the residual sub-
groups 4C2L1R, 3C2L2R1B−L and SU (5)×U (1), and we conclude that the 3C2L1R1B−L

broken phase is non-observable. This statement persists in the classically scale-invariant
regime considered in this work (i.e. in absence of scalar mass terms), when one examines the
residual gauge group along the flat directions of the vacuum manifold. A similar reasoning
applies to the SO(10)→

[
SU (4)×U (1)2

]′ vacuum manifold which effectively corresponds
to a SO(10)→ SU (5)×U (1) breaking after minimisation.

At this point, we would like to make an important comment regarding the 3C2L2R1B−L

and 4C2L1R1B−L breakings studied in e.g. [5, 21, 22, 47]. In particular, still in presence of
a scalar mass term in the tree-level potential, it is straightforward to compute the depth of
the minimum in the following vacuum configurations:

V min
3C2L2R1B−L =

−3µ2
φ

12λ1 + 7λ2
, (4.16)

V min
4C2L1R1B−L =

−µ2
φ

4λ1 + 2λ2
, (4.17)

V min
SU (5)×U (1) =

−5µ2
φ

20λ1 + 13λ2
. (4.18)

We can add to this list the depth of the minimum in a SO(8)×U (1) vacuum configuration:

V min
SO(8)×U (1) =

−µ2
φ

4λ1 + λ2
. (4.19)

With these expressions at hand, we may establish a hierarchy for the depth of the minima
in these four vacuum configurations8, see also [48]:

V min
SO(8)×U (1) < V min

4C2L1R1B−L < V min
3C2L2R1B−L < V min

SU (5)×U (1) if
λ2

λ1
> 0 , (4.20)

V min
SO(8)×U (1) > V min

4C2L1R1B−L > V min
3C2L2R1B−L > V min

SU (5)×U (1) if
λ2

λ1
< 0 , (4.21)

V min
SO(8)×U (1) = V min

4C2L1R1B−L = V min
3C2L2R1B−L = V min

SU (5)×U (1) if λ2 = 0 . (4.22)

From the above inequalities, a critical observation is that the 3C2L2R1B−L and 4C2L1R1B−L

vacua cannot correspond to global minima, except perhaps in the limiting case where λ2 = 0,
in which loop corrections to the scalar potential would have to be included to remove the

8Note that when λ1 = 0, the conditions λ2
λ1

> 0 and λ2
λ1

< 0 must be respectively replaced by λ2 > 0 and
λ2 < 0.
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degeneracy. Such phases are referred to as locally observable in Table 1, reflecting their
property to only corresponding to local minima at tree-level, or to belonging at best to a
degenerate set of global minima in a rather fine-tuned setting.

Table 1: Summary of the considered breaking patterns. In each case, we indicate which
vevs should be non-zero in order to trigger spontaneous breakdown towards the relevant
subgroups. A starred vev (e.g. ω∗8) can however vanish without altering the nature of the
vacuum. As explained in the main text, non-observable phases correspond to minima which
cannot be global, while non-admissible breakings occur towards subgroups of SO(10) which
do not contain the Standard Model. An admissible breaking is called viable if it can obey
the proton stability and gauge coupling unification constraints (more detail is given in
Sec. 4.2.4).

Breaking chain Vevs Observable? Admissible? Viable?

SU (5)×U (1) ωR = ωB Yes Yes Yes
SU (5) ω∗R = ω∗B, χ5 Yes Yes No

3C2L2R1B−L ωB, χ5 Yes, locally Yes Yes
4C2L1R ωR, χ5 Yes, locally Yes Yes

3C2L1R1B−L ωR, ωB No Yes Yes
3C2L1Y ωR, ωB, χ5 or χR Yes Yes Yes

SO(8)×U (1) ω8 Yes No No
SO(7) ω∗8, χ4 = χ5 Yes No No

SU (4)×U (1)2 ω∗8, ω4 Yes No No[
SU (4)×U (1)2

]′
ω∗8, ω′4 No No No

SU (4)×U (1) ω8, ω4, χ4 or χ5 Yes No No

4.2.4 Viability of admissible breaking patterns

We conclude this section by a discussion on the viability of the breaking chains eventually
leading to the Standard Model. These admissible breakings are summarised in Table. 1.
Independently of the observable property of the SO(10) vacua (which is a priori dependent
of the perturbative order of the quantum scalar potential), a viable breaking is understood
to feature desirable (and non-excluded) phenomenological properties in the low-energy
regime (e.g. down to the electroweak scale). In its strongest version, such a definition
encompasses a large number of criteria such as proper gauge coupling unification, a proton
decay constant large enough to evade current experimental bounds, a fermion and scalar
spectrum containing the Standard Model and compatible with negative new physics searches,
among many others. In this work, we will solely retain the first two criteria since any further
considerations are beyond the scope of the present analysis9.

9Furthermore, as mentioned in Sec. 4.1, the SO(10) model investigated here is anyways unable to
reproduce some phenomenological features of the Standard Model.
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First focusing on the Georgi-Glashow route, the one-step unification SU (5)→ 3C2L1Y

is not supported by the current measurements of the Standard Model gauge couplings,
thus bringing us to regard the SU (5) breaking as non-viable. On the other hand, the
SU (5)× U (1)→ 3C2L1Y embedding (flipped or standard, see Sec. 4.2.1) can be realised if
large thresholds10 are present [19], thus implying large hierarchies in the scalar and gauge
boson spectrum at the SO(10)-breaking scale. Combined with constraints stemming from
the proton decay, this scenario is rather tightly constrained yet not ruled out.

For the Pati-Salam route including the breakdown of SO(10) towards 4C2L1R, 3C2L2R1B−L

and 3C2L1R1B−L, we refer to [22] and conclude that gauge coupling unification and
proton-decay constraints can be satisfied for the first two breakings. On the other hand,
SO(10)→ 3C2L1R1B−L is shown in [19] to require sizeable threshold corrections in order to
allow for a proper unification of the gauge-couplings. This being said, we have mentioned in
the introduction of this section that the 4C2L1R, 3C2L2R1B−L and 3C2L1R1B−L breakings
have long been disregarded due to the presence of tachyonic scalar modes in their tree-level
spectrum (put differently, the corresponding extrema can only be saddle points [40–42, 50]).
More recently, it has been shown that the inclusion of one-loop corrections could stabilise
the scalar potential [5, 21, 47], rendering such breaking patterns potentially viable. What
the authors did not considered however is the eventuality that a deeper minimum triggering
a breakdown towards SO(8) × U (1) would prevent the Pati-Salam vacua to correspond
to global minima. While this statement was proven at tree-level in the previous section,
one cannot infer a priori that the non-observability of the Pati-Salam vacua would persist
after including loop-corrections. In Sec. 5, we investigate this matter and show that in fact,
the inclusion of one-loop corrections does not change this overall picture (at least in the
particular model considered here).

Finally, we comment on the viability of the one-step SO(10)→ 3C2L1Y breaking. As
compared to the SU (5)→ 3C2L1Y embedding mentioned above, gauge coupling unification
does not necessarily have to occur at once (i.e. at a single unification scale). In fact, an
effective description of the model from the UV to the IR regime can include multiple
intermediate scales at which massive gauge bosons are integrated out, and between which
different sets of gauge couplings are assumed to run. This happens in particular if a clear
hierarchy appears between the various vevs involved in the description of the vacuum
manifold after minimisation of the scalar potential (see also the discussion on standard and
flipped SU (5)×U (1) embeddings in Sec. 4.2.1). Such a situation most likely involves rather
fine-tuned relations among the parameters of the scalar potential, which we however do not
consider as a criterion for the non-viability of the model.

10Let us note that these corrections can be straightforwardly calculated within our approach and are
indeed subject to the investigation in the following paper [49]. here we simply assume that such a scenario
can take place.
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5 Results

With the RG-improved effective potential formalism, cf. Sec. 3, and the group-theoretical
structure of the specified SO(10) GUTs, cf. Sec. 4.2 at hand, we are able to demonstrate how
the EFT parameter space of said GUTs is restricted by the various constraints on a viable
scalar potential, cf. Sec. 2. In order to determine these constraints, we sample random initial
conditions to map out how each constraint reduces the potentially available parameter space.
We do so first for a model with 45H as the only scalar representation, cf. Sec. 5.1. We then
extend the analysis to a model with 45H and 16H scalar representations, cf. Sec. 5.2. An
extension of our analysis to a model with realistic Yukawa sector will be discussed in future
work [].
The scalar potential is not only driven by self-interactions but more importantly also by
contributions from the gauge coupling g10 and potential Yukawa couplings. The gauge
coupling g10 tends to destabilise the quartic scalar potential, i.e., tends to induce radiative
symmetry breaking [11]. Hence, the RG-flow-dependent value of g10 is a crucial input to
explicitly determine constraints on the scalar potential. At the same time, g10 itself also
needs to be matched to the observed low-energy gauge-coupling values. To maintain this
matching, its viable initial value at MPl thus needs to be varied with any variations of the
RG-flow of g10 between MPl and MEW. The respective uncertainties include higher-loop
corrections but are dominated by the dependence on different breaking schemes and breaking
scales [5, 22]. In principle, one may thus also sample over different values of g10|MPl

, in
particular using the one-loop RGEs g10|MPl

∈ (0.4, 0.45). Since we only aim to demonstrate
the restrictive power of the applied constraints arising in the scalar potential, we do not do
so in the following. Rather, we pick a fixed value

g10|MPl
= 0.435 . (5.1)

In principle, all of the above also holds for Yukawa couplings. Based on [11], we expect
Yukawa couplings to have a stabilising effect on the quartic couplings of representations
to which they can couple [? ]. Most excitingly, this provides a potential mechanism for a
hierarchy of several breaking scales. However, neither of the presently investigated scalar
potential admits Yukawa couplings to the fermionic 16F , i.e., to SM fermions.
In order to demonstrate the restrictive power of each constraint, cf. Sec. 2, we will apply
the constraints individually: First, we demand tree-level stability (I.a); second, we demand
perturbativity between MPl and MGUT (I.b); third, we demand that the deepest vacuum be
an admissible one (I.c), i.e., one which still remains invariant under the SM gauge group
GSM. Since the last constraint is conceptually new, we emphasise two important points.

The first concerns the inclusion of non-admissible breaking chains. On the one hand, a
successful application requires the inclusion of all admissible vacua in order to make sure
that ruled out EFT parameter space may is in fact not admissible. On the other hand, it
does not require the inclusion of all nonadmissible vacua. The more nonadmissible vacua
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are included, the more one restricts the EFT parameter space, cf. Sec. 4.2 for the respective
group-theoretical discussion for the cases at hand.

The second concerns the possible spontaneous symmetry breaking by additional mass
terms, which we neglect in the present study. Indeed, the admissibility-constraints remain
partially applicable also in the presence of mass terms. This is because while mass terms can
induce additional breaking scales MGUT-mass, the investigated radiative symmetry breaking
scales MGUT will presumable remain present. In order for a mass term to change conclusions
about an otherwise excluded region of EFT parameter space, the mass-induced symmetry-
breaking scale MGUT-mass (breaking to an admissible subgroup) must thus be larger than
the radiatively induced breaking scale MGUT (breaking to a nonadmissible subgroup).
In addition to these sets of constraints (I.a-I.c) arising from an admissible scalar potential,
one may also apply more commonly discussed constraints arising from (II.a) viable gauge
unification and (II.b) a viable Yukawa sector. As mentioned, (II.b) does not apply to
the investigated models. The application of the gauge-unification constraint (II.a), to the
remaining admissible parameter space after application of (I.a-I.c), is briefly discussed in
case of the 45H , cf. Sec. 5.1.

5.1 Constraints from an SO(10) model with 45H scalar potential

An SO(10) GUT with the 45H as the only scalar representation cannot fully break to
the SM. Nevertheless, the 45H is responsible for the first breaking step in many realistic
SO(10)-breaking chains, cf. Tab. 1. It thus serves as a simplified toymodel for the first
breaking step. The simplification is justified whenever portal couplings to other scalar
representations remain negligibly small. Note that it is not consistent to simply set the
portal couplings to zero since they are not protected by any global symmetry and thus
induced by loop corrections. The 45H -model is thus a good approximation for a realistic
first breaking step only in a regime in which portal couplings remain negligibly small. The
subsequent extension to a scalar potential with 45H and 16H representation, cf. Sec. 5.2, can
be interpreted as a test of this approximation. Indeed, we will see that the main constraint
on the EFT parameter space – while washed out – will still remain important if the scalar
potential is extended.

Group-theoretically, the 45H can break SO(10) to three different classes of observable
vacua, cf. Tab. 1 and Sec. 4 for details:

• Admissible Georgi-Glashow direction: The 45H can break towards SU (5) × U (1)

which still contains the SM.

• Admissible Pati-Salam directions: The 45H can break towards two different Pati-
Salam-type directions, i.e., to 3C2L2R1B−L or 4C2L1R, which also still contain the
SM.

• Non-admissible directions: The 45H can also break SO(10) towards two non-admissible
directions, i.e., to SO(8)×U (1) or SU (4)×U (1)2, which can no longer contain the
SM and are therefore excluded.
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Figure 1: Successive constraints arising from an admissible scalar potential, cf. Sec. 2, on
the Planck-scale theory space of quartic couplings in an SO(10) GUT with 45 scalar matter
content. The left-hand panel shows constraints arising from (I.a) stability (light-gray region)
and from (I.b) perturbativity (dark-gray region). The right-hand panel zooms in on the
resulting stable and perturbative region and shows additional constraints (I.c) arising from
the deepest radiative minimum occurring in a nonadmissible direction (red region). The
green region in the right-hand panel remains potentially viable. It is further constrained by
a viable gauge (and more generally gauge-Yukawa) sector, cf. Fig. ??.

One of the important results of this work is that we find that the Pati-Salam directions can
never occur as global minima: Either the Georgi-Glashow minima or the non-admissible
minima are always deeper. This statement is proven at tree-level in Sec. 4.2.3. We find that
it persists when radiative effects are included. In fact, we find that all initial conditions
either break towards SU (5)×U (1) or towards SO(8)×U (1).

The 45H toymodel also demonstrates clearly how the three scalar-potential constraints,
i.e., tree-level stability (I.a), perturbativity (I.b), and admissibility (I.c), successively con-
strain the EFT parameter space at MPl. This is presented in Fig. 1, where we summarise
the results of a successive analysis of uniformly distributed random initial conditions for λ1

and λ2.

First, we determine tree-level stability: Stable initial conditions are marked with light-
gray points in the left-hand panel of Fig. 1. The dashed line corresponds to the analytical
condition for tree-level stability, cf. Eq. (3.23). Clearly, the analytical condition is necessary
but not sufficient.

Second, we apply the perturbativity constraint: Initial conditions which remain suf-
ficiently perturbative along the relevant RG-flow towards lower scales are marked with
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dark-gray points in the left-hand panel of Fig. 1. Unfortunately, we are not aware of a strict
perturbativity criterion. The detailed perturbativity criterion, extending a proposed criterion
in [51], is discussed in App. C. It amounts to the demand that the theory-space norm of
neglected 2-loop contributions does not outgrow a specified fraction α of the theory-space
norm of 1-loop contributions. For all the results in this work, we pick α = 0.1 which
might be overly conservative but allows us to avoid convergence issues in the subsequent
numerical determination of the 1-loop effective potential and its deepest minimum. In
practice, perturbativity is determined as follows: We pick a random point in the interval
λ1/2 ∈ [−2, 2]. (If the point violates tree-level stability, we pick again.) We evolve the
respective initial conditions towards lower scales until the analytical conditions in Sec. ??
suggest that radiative symmetry breaking occurs. If the RG-flow remains perturbative until
radiative symmetry breaking occurs, the respective initial conditions pass the perturbativity
criterion (dark-gray region in the left-hand panel of Fig. 1). We iterate this procedure for
107 points.

Third, we apply the admissibility criterion: For initial conditions which pass tree-
level stability and perturbativity, we determine the 1-loop effective potential, the deepest
minimum, and the respective invariant subgroup (breaking direction). Construction of
the 1-loop effective potential following [] and the numerical method are detailed in Sec. 3.
Keeping with tree-level expectations in Sec. 4.2.3, we find that the global minimum occurs
either in the admissible SU (5) × U (1) direction (green region in the right-hand panel in
Fig. 1) or in the nonadmissible SO(8)× U (1) direction (red region in the right-hand panel
in Fig. 1). To explicitly demonstrate that we include the exemplary plots of the potential
minima in different directions. Observe, that when SO(8)×U (1) vacuum is not included,
then indeed Pati-Salam vacua can be the deepest minima for some regions in the parameter
space, as reported in [5, 47, 52]. However after the inclusion of the SO(8)×U (1) vacua the
Pati-Salam are never the deepest vacua. Furthermore one can observe on Figures 2c, 2d
that there is a strong degeneracy of the vacua at λ2 ≈ 0. This degeneracy comes from the
fact that all of the vacua have the same stability condition at that point namely λ1 > 0 and
that starting from λ2(MPl) results λ2(µ) ≈ 0 along the flow. Such a degeneracy is however
dangerous to the predictivity of the model, not only it implies different low-energy theories
throughout the space, but also gives rise to the long-living domain-walls dominating the
Universe [53–56] and hence is forbidden phenomenologically.

In summary: First, the Planck-scale theory space of quartic couplings is significantly
constrained by demanding an admissible scalar potential. Second, the 1-loop effective
potential will never develop a deepest minimum along a Pati-Salam-type breaking direction.

We proceed to test how robust these conclusions are, when including both a 16H along
with the 45H scalar representation.
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(a) The dependence of depth of minima on λ1
for λ2 = 0.1.
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(b) The dependence of depth of minima on λ1
for λ2 = −0.4.
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(c) The dependence of depth of minima on λ2
for λ1 = 0.1.
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(d) The dependence of depth of minima on λ2
for λ1 = 0.7.

Figure 2: The V denotes the minus log of the depth of the vacuum expectation value.
Given λ1|MPl

, λ2|MPl
we present the relative depth of the minimas in the logarithmic scale.

5.2 Constraints from an SO(10) model with 16H ⊕ 45H scalar potential

Including the 16H and 45H scalar representation, the quartic scalar potential is 6-dimensional,
cf. App. (??). This entails additional breaking chains which are discussed in detail in Sec. 4.2
and summarised in Tab. 1.

We obtain a sample of 105 random points in the region λi ∈ [−1, 1] and proceed as in
Sec. 5.1 by successively applying the three constraints on the scalar potential, cf. Sec. 2.
For each successive constraint, we only take into account points which have passed the
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Figure 3: Successive constraints (I.a-c), cf. Sec. 2, on the 6-parameter Planck-scale theory
space of quartic couplings in an SO(10) GUT with 16 + 45 scalar matter content. The left-
hand panel shows a statistical scatter-plot matrix of constraints arising from (I.a) stability
(light-gray regions) and from (I.b) perturbativity (dark-gray regions). The right-hand panel
shows a zoomed-in scatter-plot matrix of additional constraints (I.c) arising from the deepest
radiative minimum occurring in a nonadmissible direction (red regions). The green regions
in the right-hand panel remain potentially viable.

previous constraints. The results are shown in Fig. 3. We present them in the form of
statistical scatter-plot matrices which project the 6D parameter space onto a full set of 2D
slices. While this can reveal important correlation, it also leads to a perceived blurring of
presumably sharp boundaries in the full higher-dimensional parameter space.

First, we determine tree-level stability: Stable initial conditions are marked with
light-gray points in the left-hand panel of Fig. 3. The stability-constraints on the pure-
45H -couplings λ1 and λ2 remain the same as for the case without 16H . There is a similar
constraints on the pure-16H -couplings λ6 and λ7. Finally, also the portal couplings λ8 and
λ9 are constrained by demanding tree-level stability of the initial conditions.

Second, we apply the perturbativity constraint: Initial conditions which also remain
perturbative between MPl and MGUT, are marked in the left-hand panel of Fig. 3 as dark-
gray points. We remind the reader that we determine perturbativity by demanding that the
theory-space norm of neglected 2-loop contributions does not outgrow a fraction α = 1/10

of the theory-space norm of 1-loop contributions, cf. App. ?? for details. In keeping with an
intuitive notion of perturbativity, the remaining points cluster around λi = 0.

Third, we apply the admissibility criterion: We obtain the 1-loop effective potential, the
deepest minimum, and the respective invariant subgroup (breaking direction) to determine
whether the latter is admissible, i.e., remains invariant under the SM subgroup. The results
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Figure 4: Probability-density functions (PDFs) of pairs of different admissible breakings
(SU(5) in cyan; SU(5)× U(1) in magenta; SU(3)× SU(2)× U(1) in orange) for selected
projections into 2-dimensional slices of theory space. Contour lines indicate the 1σ-, 2σ-, and
3σ-regions obtained with a Gaußian kernel of width 0.05. We only show those projections
which best discriminate the two respective breaking patterns. The full scatter-plot matrices
are given in App. ??.

are presented in the right-hand panel of Fig. 3 where due to significant constraints from
perturbativity, we focus only on the remaining subregion λi ∈ [−0.5, 0.5]. (Non-) Admissible
points are shown in green (red). We find that the pure-45H couplings λ1 and λ2 are
still dominant in determining whether stable and perturbative initial conditions are also
admissible or not. At the same time, non-vanishing portal couplings can apparently alter
admissibility-constraints on pure-45H couplings λ1 and λ2, cf. right-hand panels of Fig. 1 and
Fig. 3. In particular, the admissible region in a λ1–λ2 projection of theory space grows when
the 16H is included: This occurs because there are additional admissible breaking patterns
in comparison to the pure-45H case, cf Tab. 1. This includes an admissible SU(5) breaking
and, in principle, an admissible direct breaking to the SM, i.e., to SU(3)×SU(2)×U(1). In
particular, the SU(5)-breaking can occur as the deepest vacuum, even for λ2 > 0. This adds
admissible initial conditions with λ1–λ2 which were previously excluded in the pure-45H

model.

Whether and if so which of these admissible vacua is the deepest one depends on the
initial conditions of all of the six quartic couplings. Fig. 4 shows the most prominent
correlations that we were able to identify. We emphasise that there are still no initial
conditions with admissible Pati-Salam type breaking.

In summary: The main constraints from stability and perturbativity are robust under
the extension of the 45H to the 16H⊕45H scalar potential. While Pati-Salam type breakings
remain non-admissible, other admissible breakings can occur.
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6 Discussion

We end this paper with (i) a brief summary of the results of the present work, (ii) some
comments on trans-Planckian extensions in existing quantum-gravity scenarios, and (iii) an
outlook on what we consider the most important open questions.

6.1 Summary of the main results

We have initiated a systematic study of how radiative symmetry breaking to non-admissible
vacua places significant constraints on the initial conditions of any potentially viable grand-
unified effective field theory (GUEFT). We embed this novel constraint in a systematic set
of constraints, some of which have been previously discussed in the literature. The resulting
blueprint is given in Sec. 2. It encompasses several constraints on the scalar sector: (I.a) a
tree-level stability constraint, (I.b) a perturbativity constraint on quartic couplings, and
(I.c) the above-mentioned novel requirement of admissible vacua. These scalar-potential
constraints supplement well-known requirements on a viable gauge-Yukawa sector, cf. Sec. 2
as well as [].

As a first application, we exemplify these constraints in an SO(10) GUT with three
families of 16F fermionic representations and a scalar potential build from a 16H and a
45H representation. Therein, we have demonstrated how each successive application of the
constraints (I.a), (I.b), and (I.c) reduces the admissible parameter space of initial conditions.

The above concrete model yet lacks a sufficiently large Yukawa sector to account for
the Standard-Model Yukawa sector. Still, we were able to draw some important specific
conclusions. Firstly, we find that previously neglected non-admissible breaking directions
prohibit any possibility of radiative symmetry breaking to the Standard Model via Pati-
Salam type intermediate vacua. This conclusion exemplifies that (I.c) poses a novel but
highly significant constraint on GUEFTs.

6.2 Comments on a link to three specific quantum-gravity scenarios

Our main motivation to systematically constrain the viable Planck-scale parameter space of
GUEFTs is a promising connection to quantum-gravity (QG) scenarios. If such a link can
be drawn, the predictive power of QG scenarios may provide a further set of constraints
(III) on the Planck-scale initial conditions. Vice versa, GUEFTs provide a possible arena
for experimentally accessible indirect tests of QG. This is because, as our work clearly
demonstrates, viable IR phenomenology is impacted by Planck-scale initial conditions.

Before providing an outlook on future work, we thus briefly comment on three QG
scenarios in which we see a promising route to make this link explicit. It is useful to
distinguish between two possibilities.

On the one hand, there are QG scenarios which remain within the framework of
quantum field theory. In this case, gravitational fluctuations will simply provide additional
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contributions to the Renormalisation Group (RG) flow of beta functions of the GUEFT, i.e.,

βci = β(GUEFT)
ci + β(gravity)ci . (6.1)

Herein, ci denotes the collection of all GUEFT couplings. Typically, one then demands βci
to lead to a UV-complete theory. With sufficient insight into the gravitational contributions
β
(gravity)
ci such a UV-completion implies additional constraints on the parameter space at

the Planck scale. We will comment on two such scenarios – Complete Asymptotic Freedom
as well as Asymptotic Safety – below.

On the other hand, there are QG scenarios which cannot be phrased in the framework
of quantum field theory. Nevertheless, in order to be consistent with observations, they have
to provide a limit – typically associated with the Planck scale – in which an EFT description
emerges as a low-energy limit. Hence, there again must be some way of extracting predictions
about the GUEFT couplings at the Planck scale. We will briefly comment on the case of
string theory below.

Complete Asymptotic Freedom

Some QG scenarios suggest that even at trans-Planckian scales, gravity decouples from
the matter sector, cf. e.g. [57? ? ]. In practice, such scenarios thus amount to simply
extrapolating the SM or, in the present context, the respective GUEFT beyond the Planck
scale, i.e.,

β(gravity)ci = 0 , (6.2)

in Eq. 6.1. We note that, in any such QG scenario, the Standard Model remains UV-
incomplete due to the U(1) Landau-pole. This obstruction, however, can be avoided in a
GUT where the U(1) Abelian gauge group at high energies is part of a non-Abelian gauge
group with self-interactions. Said self-interactions can – depending on the respective gauge
group and matter content – be sufficiently antiscreening to provide for asymptotic freedom
of the gauge coupling. Even asymptotically free gauge sectors can be sufficient to also render
Yukawa couplings and quartic couplings asymptotically free: a proposal known as Complete
Asymptotic Freedom (CAF) of gauge-Yukawa theories11. The conditions to achieve CAF in
gauge-Yukawa theories have been analysed in [? ? ? ? ]. Certainly, the demanding CAF
without gravity places additional non-trivial constraints on the viable parameter space at
the Planck scale. Such a QG scenario is thus probably the most straightforward example of
additional constraints from demanding a UV-completion.

Asymptotic Safety

The asymptotic-safety scenario for QG [? ? ] predicts quantum scale symmetry of gravity
and matter at scales k beyond the Planck scale MPl. If asymptotic safety is realised, the

11More recently, it has also been found that gauge-Yukawa theories can develop interacting fixed points
with UV-attractive directions and may thus, in principle, be asymptotically safe without the presence of
gravitational fluctuations []. We caution that it is unclear whether commonly discussed GUTs can realise
such a scenario [].
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dimensionless Newton coupling g = Gk2 (with G the usual dimensionful Newton coupling)
transitions between classical power-law scaling g ∼ k2 below MPl and scale symmetry, i.e.,
scale-independent behaviour g = g∗ = const above MPl. The leading-order gravitational
contribution acts like an anomalous dimension and the transition can be described, cf. [], by

β(gravity)ci =

fci ci +O(c2
i ) + . . . k > MPl

0 k < MPl

. (6.3)

with fci constant, dependent on the gravitational fixed-point values, e.g. g∗, and, in principle,
calculable from first principles. As long as all GUEFT couplings ci remain in the perturbative
regime, neglecting O(c2

i ) is a good approximation. Dots denote further terms by non-minimal
and induced higher-order couplings, cf [] for a discussion of these.

Due to the universal nature of gravity, fci ≡ fg is universal for all gauge couplings;
fci ≡ fy is universal for all Yukawa couplings; and fci ≡ fλ is universal for all quartic
couplings. Functional RG calculations provide the following picture12: The gravitational
contribution to gauge couplings is found to be antiscreening, i.e., fg > 0 []; The screening
or antiscreening nature of the gravitational contribution to Yukawa couplings depends on
the matter content of the universe []; The gravitational contribution to quartic couplings is
found to be screening, i.e., fλ < 0 [].

Clearly, the additional antiscreening contribution fg to the RG flow of gauge couplings
will (in comparison to CAF without gravity) enlarge the Planck-scale parameter space with
underlying UV-complete dynamics, cf. [] and [] for applications to the Standard Model and
to GUTs, respectively.

To the contrary, the screening contribution to scalar quartic couplings (and scalar
potentials in general) [] is expected to provide sharp predictions for the shape of scalar
potentials, cf. [] for an application to the SM Higgs potential, [] for applications to dark-
matter, and [11] for a previous discussion of GUT potentials. This is most exciting in the
present context of GUEFTs since it suggests that Asymptotic Safety may fully predict
the scalar potentials and thus the breaking scales and breaking directions of GUEFT
models [11]. The methods developed in this work provide the basis for a systematic study
of these promising ideas. The biggest outstanding caveat is the question how gravitational
contributions will impact the presently applied multidimensional effective-potential methods,
cf. Sec. 3.

String Theory

Let us first note that supersymmetric Grand Unification is quite natural in context of
string theory, see for example [12, 15, 58–60] and references therein. In particular the
heterotic String theory E8 × E8 compactified on the Calabi-Yau threefold SU(4) results in

12In perturbative dimensional regularisation schemes, gravitational contributions to matter couplings have
also been calculated [], cf. [] for recent progress on the relation between functional RG and dimensional
regularization schemes and [] for an application to gravity-matter systems.
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the SUSY SO(10). However the low-energy supersymmetry has not been found and the
non-SUSY vacua are notoriously hard to be constructed. Yet, there exists a non-tachyonic
SO(16)× SO(16) string theory with no-supersymmetry, when during compactification one
gets SO(10) model with 45H potential [14]! Since in string theory all of the low energy
couplings stems from the expectation values of the “radion” fields, that is the diagonal part
of the metric in the compactified dimensions. In particular in the Kaluza-Klein theory, the
4D equations resembles the Einstein-Maxwell system with the electomagnetic coupling given
by some function of the diagnonal 5-dimension entry g55 [61]. Hence, given compactification
of SO(16)× SO(16) to 4-dimensions, the λi are not free parameters, but can be calculated.

6.3 Outlook

We see the following important extensions and applications.
First and foremost, a viable Yukawa sector [] requires an extension of the specified scalar

representations from 16H ⊕ 45H to 16H ⊕ 45H ⊕ 126H . Without such an extension, any
applications to specific quantum-gravity approaches may still give tentative insights but do
not present the full picture.

Within such a minimal but viable grand-unified effective field theory (GUEFT), the
presented blueprint will determine which regions in parameter space correspond to a viable
IR phenomenology. In such a setup, it may prove important to reconsider the respective
constraints arising from non-admissible breaking directions in view of mass terms, cf. Sec. ??.

With regards to applications to concrete quantum-gravity (QG) scenarios, it seems
promising to study all three approaches in Sec. 6.2. QG scenarios which reduce a study
of Complete Asymptotic Freedom (CAF) are directly applicable. The QG scenario of
asymptotic safety requires an extension of the effective potential to include gravitational
contributions.

Overall, we are convinced that this is only the first step and that there is a promising
route to connect QG approaches to a restoration of predictive power in GUEFTs.
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A One-loop RG-improved potential

In this appendix, we review a certain number of useful properties and relations satisfied by
the one-loop RG-improved potential introduced in section 3. In particular, we analytically
justify the numerical approach used in this work to efficiently estimate the depth of the
RG-improved potential in every relevant vacuum configuration in sections A.2 and A.3, and
numerically evaluate its accuracy in section A.4.

A.1 Stationary point equation

In order to derive the station point equation for the RG-improved potential, it is first
useful to note that the field derivatives of any RG-improved quantity V

(
φi, µ∗(φ

i)
)
can be

decomposed in the following way:

∇iV (φ, µ∗(φ)) =
dV

dφi
(φ, µ∗(φ)) =

∂V

∂φi
(φ, µ∗(φ)) +∇it∗

dV

dt
(φ, µ∗(φ)) . (A.1)

Namely, the total derivative with respect to the field component φi splits into a partial
derivative, and a contribution stemming from the implicit dependence of the RG-scale
t∗ = logµ2

∗ on the field values. Next, we can readily express the stationary point equations
satisfied by the RG-improved potential at an extremum:

∇iV eff
(
φ, µ∗(φ

i)
)

=
∂V eff

∂φi
(φ, µ∗(φ)) +∇it∗

dV eff

dt
(φ, µ∗(φ))

= ∂iV
eff (φ, µ∗(φ)) + 2B (φ, µ∗(φ))∇it∗ (φ) = 0 , (A.2)

where we used in the last step the first order truncated Callan-Symanzik equation (3.7) (see
e.g. [18]):

dV (0)

dt
= 2B . (A.3)

An expression for∇it∗ may be derived, using the fact that V (1) (φ;µ∗(φ)) identically vanishes:

V (1) (φ;µ∗(φ)) = A (φ;µ∗(φ)) + B (φ;µ∗(φ)) log
ϕ2

µ2
∗

= 0 ∀φ . (A.4)

Taking the field derivatives of the previous equation yields (we temporarily omit the functions’
arguments for clarity):

∇iV (1) = ∇iA +∇iB log
ϕ2

µ2
∗

+ 2B
(
φi

ϕ2
− 2∇it∗

)
= 0

⇒ ∇it∗ =
φi

ϕ2
+

1

2B

(
∇iA +∇iB log

ϕ2

µ2
∗

)
. (A.5)
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Neglecting terms of order 2 in perturbation theory, the field derivatives of A and B can be
simplified as 13

∇iA =
∂A
∂φi

+∇it∗
dA
dt
≈ ∂A
∂φi

, (A.6)

∇iB =
∂B
∂φi

+∇it∗
dB
dt
≈ ∂A
∂φi

. (A.7)

In this approximation, it is straightforward to derive the radial stationary point equa-
tion (A.9), by first noting that

φi∇it∗ = 1 +
1

2B

(
φi
∂A
∂φi

+ φi
∂B
∂φi

log
ϕ2

µ2
∗

)
= 1 +

1

2B
4V (1) = 1 ,

(A.8)

where the last line stems from the homogeneity of A and B with respect to φ. Hence, we
may write

φi∇iV eff = φi
∂V eff

∂φi
+ 2Bφi∇it∗ = 4V eff + 2B = 0 , (A.9)

which is the radial stationary point equation derived in [18]. Going one step further, it is
possible to reiterate the derivation beyond the one-loop approximation. We first derive the
exact form of ∇it∗, starting from Eq. (A.5) and using once again the decomposition (A.1):

∇it∗ =
φi

ϕ2
+

1

2B

(
∇iA +∇iB log

ϕ2

µ2
∗

)
=
φi

ϕ2
+

1

2B

(
∂A
∂φi

+
∂B
∂φi

log
ϕ2

µ2
∗

)
+

1

2B
∇it∗

(
dA
dt

+
dB
dt

log
ϕ2

µ2
∗

)
. (A.10)

Collecting all the ∇it∗ terms in the left-hand side, one finally gets

∇it∗ = η

[
φi

ϕ2
+

1

2B

(
∂A
∂φi

+
∂B
∂φi

log
ϕ2

µ2
∗

)]
(A.11)

where

η ≡
[
1− 1

2B

(
dA
dt

+
dB
dt

log
ϕ2

µ2
∗

)]−1

. (A.12)

In other words, including the order 2 contributions introduces a multiplicative factor η in
the expression of ∇it∗, satisfying

η = 1 +O
(
~2
)
. (A.13)

In particular, the set of stationary point equations now reads

∇iV eff = ∂iV
eff + 2ηB∇it∗ = 0 , (A.14)

13This is the t(0)∗ approximation mentioned in [17, 18].
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and the radial stationary point equation becomes

4V eff + 2ηB = 0 . (A.15)

Clearly, in the O(~) approximation where the running of A and B is neglected, (A.15)
reduces to (A.9):

4V eff + 2B = 0 . (A.16)

The main advantage of the above approximation is that Eq. (A.16) always takes a polynomial
form in the fields. More precisely, the quantity

Ṽ (0) ≡ V eff +
1

2
B (A.17)

takes the same polynomial form as V (0) with 1-loop corrected numerical coefficients and
vanishes at a minimum by (A.9). It can be shown [18] that the second derivative of the
potential along the radial direction is proportional to B. Therefore, according to (A.9), at a
minimum one has B > 0 and V eff < 0.

A.2 RG-improvement and the Gildener-Weinberg approximation

In the Gildener-Weinberg approach [38], the renormalisation scale prescription consists in
identifying the RG-scale µGW at which the tree-level potential develops a flat direction.
Along this flat direction, the field values are expressed as

φ = ϕ~n . (A.18)

Based on the general expression of the one loop contributions to the scalar potential (3.1)
and on the homogeneity of A and B with respect to the radial coordinate, one may write

V (1)(φ;µ) = A(φ;µ) + B(φ;µ) log
ϕ2

µ2
= A(~n;µ)ϕ4 + B(~n;µ)ϕ4 log

ϕ2

µ2
(A.19)

so the tree-level and 1-loop contributions to the scalar potential take the following form
along the flat direction:

V (0)(φ;µGW) = λ(~n;µGW)ϕ4 = 0 , (A.20)

V (1)(φ;µGW) = A(~n;µGW)ϕ4 + B(~n;µGW)ϕ4 log
ϕ2

µ2
GW

. (A.21)

Taking the derivative with respect to ϕ yields

∂V (0)

∂ϕ
(φ;µGW) = 4λ(~n;µ2

GW)ϕ3 = 0 , (A.22)

∂V (1)

∂ϕ
(φ;µGW) = 4ϕ3

[
A(~n;µGW) + B(~n;µGW)

(
log

ϕ2

µ2
GW

+
1

2

)]
. (A.23)

Hence at the minimum the radial coordinate satisfies the relation

log
〈ϕ〉2

µ2
GW

= −1

2
− A

B
. (A.24)
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Getting back to the RG improvement procedure described in section 3.1, one may define a
RG-scale µ̃ such that the one loop corrections vanish at the field value 〈φ〉 = ~n 〈ϕ〉, namely:

V (1)(〈φ〉 ; µ̃) = 0 . (A.25)

Let δt = t̃− tGW = log µ̃2

µ2GW
be the associated shift in the logartihm of the RG-scales. To

first order in δt, one has

V (0)(〈φ〉 , µ̃) = V (0)(〈φ〉 , µGW) + δt
dV (0)

dt
(〈φ〉 , µGW) +O

(
δt2
)
, (A.26)

A(~n, µ̃) = A(~n, µGW) + δt
dA
dt

(~n, µGW) +O
(
δt2
)
, (A.27)

B(~n, µ̃) = B(~n, µGW) + δt
dB
dt

(~n, µGW) +O
(
δt2
)
. (A.28)

Discarding terms that are formally of order 2 in perturbation theory allows to simplify the
last two relations:

A(~n, µ̃) = A(~n, µGW) +O
(
δt2
)
, (A.29)

B(~n, µ̃) = B(~n, µGW) +O
(
δt2
)
. (A.30)

Had we retained terms of order (δt)2 in the above expansions, working in the 1-loop
approximation would have yielded Eqs. (A.26), (A.29), (A.30) anyways, since the O

(
δt2
)

terms formally encompass O(~2) quantities. Combining Eqs. (A.23) and (A.29), (A.30)
allows to rewrite the Gildener-Weinberg radial stationary point equation at the shifted scale
µ̃:

0 =
∂

∂ϕ

(
V (0)(φ;µGW) + V (1)(φ;µGW)

)
= 4ϕ3

[
A(~n, µ̃) + B(~n; µ̃)

(
log

ϕ2

µ̃2
+ 2δt+

1

2

)]
= 4ϕ3B(~n; µ̃)

(
1

2
+ 2δt

)
, (A.31)

where Eq. (A.25) was used in the last step. We conclude that, in the one loop approximation,

δt = −1

4
. (A.32)

Considering the first order truncation of Callan-Symanzik equation (3.7),

dV (0)

dt
= 2B . (A.33)

we finally obtain the relation

V (0)(φ;µGW) = V (0)(φ; µ̃)− 2B(φ;µGW)δt = V (0)(φ; µ̃) +
1

2
B(φ; µ̃) ≡ Ṽ (0)(φ; µ̃) , (A.34)

where the quantity Ṽ (0) is defined similarly as in Eq. (A.17). Quite importantly, the above
relation implies that in the one loop approximation, at the scale µ̃, the corrected tree-level
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potential Ṽ (0) has the same structure than the tree-level potential evaluated at the scale
µGW. In particular, Ṽ (0)(φ; µ̃) inherits the flat direction of V (0)(φ;µGW), and therefore

Ṽ (0)(〈φ〉 ; µ̃) = 0 . (A.35)

From the above equation, we may finally conclude that the Gildener-Weinberg vev 〈φ〉
satisfies the RG-improved radial stationary point equation (A.9). It is worth emphasising
that, 〈φ〉 is not, in general, a solution of the full set of stationary point equations (A.2),
i.e. it does not minimise the RG-improved potential V eff . In what follows, we will show
however that it constitutes a first order approximation of the actual vev 〈φ〉min.

Denoting δφ = 〈φ〉min−〈φ〉 the shift between the actual vev and the Gildener-Weinberg
solution, one may write, to first order in δφ:

Ṽ (0)(〈φ〉min) = Ṽ (0) (〈φ〉) + δφi∇iṼ (0) (〈φ〉) +O
(
δφ2
)
. (A.36)

Since both 〈φ〉min and 〈φ〉 belong to the hypersurface where the radial stationary point
equation is satisfied (i.e. where V eff = 0) and using the decomposition (A.1), the above
relation reduces to

0 = δφi∇iṼ (0) (〈φ〉) = δφi∂iṼ
(0) (〈φ〉) + δφi∇it∗ (〈φ〉) dṼ

(0)

dt
(〈φ〉) . (A.37)

The ∂i derivative in the right-hand side of the above equation vanishes since 〈φ〉 lies along
the flat direction of Ṽ (0)(φ; µ̃). In addition, to first order in perturbation theory, one can
approximate

dṼ (0)

dt
(〈φ〉) =

dV (0)

dt
(〈φ〉) +O(~2) , (A.38)

and (A.37) implies

δφi∇it∗ (〈φ〉) = 0 . (A.39)

Furthermore, to first order in δφi

t∗(〈φ〉min) = t∗(〈φ〉) + δφi∇t∗ (〈φ〉) , (A.40)

so we can finally establish that, to first order in perturbation theory,

t∗(〈φ〉min) = t∗(〈φ〉) +O
(
δφ2
)
⇒ µmin

∗ ≈ µ̃. (A.41)

The above approximation constitutes the main result of this appendix, which can be
summarised as follows: The RG-scale µ̃ at which the corrected tree-level potential Ṽ (0) =

V (0) +B/2 develops a flat direction is a first order approximation of the value taken by field-
dependent RG-scale µmin

∗ at the minimum of the RG-improved potential. This observation
justifies the procedure described in section 3.2 to estimate, in an algorithmically efficient
way, the position and depth of the minimum of the RG-improved potential.
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A.3 Minimisation beyond the one-loop approximation

The numerical procedure described in section 3.2 in the one-loop approximation of the radial
stationary point equation can be slightly improved by taking into account corrections that
are formally of order 2 in perturbation theory. For convenience, we rewrite below the exact
radial stationary point equation (A.15) obtained beyond the 1-loop approximation:

4V (0) + 2ηB = 0 . (A.42)

where

η =

[
1− 1

2B

(
dA
dt

+
dB
dt

log
ϕ2

µ2
∗

)]−1

. (A.43)

The expression of η can be further simplified by using

V (1) = A + B log
ϕ2

µ2
∗

= 0 ⇒ log
ϕ2

µ2
∗

= −A
B
, (A.44)

namely:

η =

[
1− 1

2

dA
dt B− AdB

dt

B2

]−1

=

[
1− 1

2

d

dt

A
B

]−1

. (A.45)

In this latter form, it is clear that η does not depend on the radial field coordinate, but
only on the direction of the field vector in the field space. We conveniently make use of
this property in an iterative method allowing to estimate the position of the minimum
beyond the 1-loop approximation. We restate below the minimisation procedure described in
Section 3.2, where steps 3 and 4 have been modified to include the effect of 2-loop corrections
stemming from η, namely:

1. Starting with random values for the quartic couplings at some high scale µ0, the stability
of the tree-level potential is asserted, and unstable configurations are discarded.

2. Evolution of the quartic couplings according to their RG running is performed down
to some lower scale µ1.

3. At this point, we initialise the iterative procedure taking into account the effects of
η 6= 1. For the first iteration, we set

k = 0, ηk = η0 = 1 .

Defining
Ṽ (0)

∣∣∣
k

= Ṽ (0)
∣∣∣
η=ηk

= V (0) + 2ηkB ,

the scale µ̃k at which Ṽ (0)
∣∣∣
k
develops flat directions is identified.

4. At the scale µ̃k, the flat direction ~nk is identified. The value of

ηk+1 = η(~nk; µ̃k)
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does not depend on the radial field coordinate, and is evaluated using Eq. (A.45). If
|ηk+1 − ηk| > ε, we repeat step 3 with

k → k + 1, ηk → ηk+1 .

Otherwise, we consider that the iteration has converged (in practice we set ε = 10−5),
and will use ~n = ~nk as the corrected generating vector of the flat direction, along
which the field values take the form

φ = ϕ~n .

5. The unique value of 〈ϕ〉 such that

V (1) (〈ϕ〉~n; µ̃) = 0

is identified. The field vector 〈φ〉 = 〈ϕ〉~n constitutes an estimation of the exact position
of the minimum.

6. Finally, the depth of the RG-improved potential at the minimum, i.e. the quantity

V eff(〈φ〉) = V (0)(〈φ〉); µ̃)

is evaluated.

This modified minimisation procedure allows to achieve better accuracy (see the next section)
on the estimation of the position and depth of the minimum. This is the procedure that
was systematically used in our numerical study of the breaking patterns of the model.

A.4 Numerical performance and accuracy of the minimisation procedure

In order to confirm that the simplified minimisation procedure described in Section 3.2
and improved above does provide a reasonable estimation of the depth and position of the
minimum, we have compared its outcome with that of a full-fledged numerical minimisation
of the RG-improved potential. This comparison has been performed on a random sample of
points, both in the case of 2- and 3-vev manifolds14, for which the number of minima hence
characterised amounts to N (2) = 2000 and N (3) = 500, respectively.

As stated before, the main motivation for using a simplified minimisation procedure
is to speed-up the computations, therefore enabling one to perform a random scan over
a large sample of points. Fig. A.1 illustrates the performance improvement in terms of
execution time for both 2- and 3-vev manifolds. Given a minimum, we define Tfull as the
execution time of a full numerical minimisation and Tsimp as the execution time of the
simplified algorithms. The gain in performance Tfull/Tsimp is of order O

(
102
)
and O

(
103
)
–

14By construction, the improved minimisation procedure described above is ensured to converge towards
the true minimum in the case of 1-vev manifolds.
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Figure A.1: Gain in performance for 2-vev (left panel) and 3-vev (right panel) manifolds,
using the minimisation procedure described in Section 3.2 (yellow bars) and its improved
version (blue bars), compared to a full-fledged numerical minimisation.
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Figure A.2: Logarithmic relative error on Vmin for 2-vev (left panel) and 3-vev (right panel)
manifolds, using the minimisation procedure described in Section 3.2 (yellow bars) and its
improved version (blue bars), compared to a full-fledged numerical minimisation.

O
(
104
)
for 2- and 3-vev manifolds respectively. Note that, on the computer used to perform

this analysis, the average execution time of the full numerical minimisation is 4 s for 2-vev
manifolds and 460 s for 3-vev manifolds.

Of course, the major gain in performance comes at a price: our minimisation procedure
only provides an approximation of the position and depth of a minimum. However, as

shown in Figures A.2–A.4, the relative error on the quantities Vmin, ϕmin =
√
〈φ〉min

i 〈φ〉min
i

and tmin
∗ = t∗(〈φ〉min) are kept at a reasonable level. Concretely speaking, defining the

logarithmic relative error on the parameter X (with X = Vmin, ϕ
min, tmin

∗ ) as

logrel(X) = log10 |δ(X)| = log10

∣∣∣∣100× Xsimp −Xfull

Xfull

∣∣∣∣ , (A.46)

rare are the points for which logrel(X) > 1. In other words, the relative error (in particular
on the depth of the potential at a minimum, which is the most important quantity in this
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Figure A.3: Logarithmic relative error on ϕmin for 2-vev (left panel) and 3-vev (right panel)
manifolds, using the minimisation procedure described in Section 3.2 (yellow bars) and its
improved version (blue bars), compared to a full-fledged numerical minimisation.
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Figure A.4: Logarithmic relative error on tmin
∗ for 2-vev (left panel) and 3-vev (right panel)

manifolds, using the minimisation procedure described in Section 3.2 (yellow bars) and its
improved version (blue bars), compared to a full-fledged numerical minimisation.

analysis) is almost always kept under the 10% level. In fact, focusing on the quantity of
interest, Vmin, we observe that:

• For 2-vev manifolds, δ(Vmin) > 10 % for 0.8 % of the points and δ(Vmin) > 5 % for
2.4 % of the points,

• For 3-vev manifolds, δ(Vmin) > 10 % for 0.6 % of the points and δ(Vmin) > 5 % for 3 %

of the points.

In addition, two comments are worth making regarding the left panel of Fig. A.2, showing
the relative error on Vmin in the case of 2-vev manifolds:

• The excess of points with a relative error of order O
(
10−10 %

)
to O

(
10−4 %

)
cor-

responds to situations where one of the two vevs actually vanishes along the flat
direction. In such cases, one effectively ends up minimising a 1-vev manifold, for
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which the improved minimisation procedure in ensured to converge towards the true
minimum (up to numerical errors).

• A small number of points (5 out of 2000) give logrel (Vmin) ≈ 3 or, equivalently,
δ (Vmin) ≈ 1000 %. We have explicitly checked that those points are in fact char-
acterised by the occurrence of two flat directions of different nature at RG-scales
very close to each other, implying in turn the existence of two distinct local minima.
Hence, the large value of the relative error is simply explained by the fact that the
full numerical minimisation has converged in this case towards one of the two minima,
distinct from the one characterised by the simplified minimisation algorithm.

Finally, Figures A.2–A.4 show that, as expected, the improved minimisation algorithm
described in App. A.3 overall yields a better characterisation of the minima, both in the
case of 2- and 3-vev manifolds (at the reasonable cost of a slightly increased execution time).

B General tree-level stability conditions

The various breaking patterns studied in this work are characterised by vacuum manifolds
consisting of at most 3 vevs. In this appendix, we establish the conditions of tree-level
stability for general potentials of 1, 2 and 3 variables, as well as the circumstances of their
violation along the RG-flow. We give in particular a characterisation of the flat directions
that appear at the precise energy scale at which the violation of tree-level stability occurs.

For completeness, let us start the discussion with 1-vev vacuum manifolds (occurring
for instance in the SO(8)×U (1) breaking), for which the study of stability and its violation
is trivial. Such a vacuum structure is parametrised by

V (x) = ax4 , (B.1)

so the condition for a stable (i.e. bounded from below) potential is simply

a > 0 . (B.2)

Therefore, symmetry breaking will be uniquely triggered along the RG-flow as soon as the
quartic coupling a turns negative.

B.1 Stability of 2-vev vacuum manifolds

Now turning to vacuum manifolds consisting of 2 variables, we have in general:

V (x, y) = a0x
4 + a1x

2y2 + a2y
4 , (B.3)

and it is straightforward to derive the conditions of a stable potential:

a0 > 0 ∧ a2 > 0 ∧ a1 + 2
√
a0a2 > 0 . (B.4)

Following the discussion in Sec. 4.2, the stability constraints can be violated in three distinct
manners, corresponding to the violation of any one of the three conditions in Eq. (B.4).
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Below we examine the generated flat direction in each of these three cases. We make the
assumption that only one of the three conditions in Eq. (B.4) gets violated along the RG-flow,
i.e. that the other two remain satisfied.

Case 1: a0 = 0. The potential simplifies as

V (x, y) = (a1x
2 + a2y

2)y2 , (B.5)

and the other stability constraints are satisfied, namely

a2 > 0 ∧ a1 > 0 . (B.6)

Clearly, the flat direction is parameterised by(
x

y

)
= λ

(
1

0

)
, λ ∈ R . (B.7)

Case 2: a2 = 0. Similarly, the potential simplifies as

V (x, y) = (a0x
2 + a1y

2)x2 , (B.8)

and since a0, a1 > 0, the flat direction occurs in the direction(
x

y

)
= λ

(
0

1

)
. (B.9)

Case 3: a1 + 2
√
a0a2 = 0. In this case, the potential can be factored in the form

V (x, y) =
(√
a0 x

2 −
√
a2 y

2
)2
. (B.10)

The other constraints are satisfied, namely

a0 > 0 ∧ a2 > 0 , (B.11)

and two flat directions occur in the directions(
x

y

)
= λ

(
a

1/4
2

± a1/4
0

)
. (B.12)

B.2 Stability of 3-vev vacuum manifolds

We finally turn to the study of 3-vev manifolds, which will need a much more elaborate
discussion. However it will be helpful to note that the 3-vev structures considered in this
work can be put in the form

V (χ, ω1, ω2) = αχ4 + β(ω1, ω2)χ2 + γ(ω1, ω2) , (B.13)
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where β and γ take the general forms

β(ω1, ω2) = b0ω
2
1 + b1ω1ω2 + b2ω

2
2 =

(
b0 + b1X + b2X

2
)
ω2

1 = β̃(X)ω2
1 , (B.14)

γ(ω1, ω2) = c0ω
4
1 + c1ω

2
1ω

2
2 + c2ω

4
2 =

(
c0 + c1X

2 + c2X
4
)
ω4

1 = γ̃(X)ω4
1 , (B.15)

with X = ω2/ω1. For the above potential to be bounded from below, it must be non-negative
for all values of the vevs. First of all, positivity at ω1 = ω2 = 0 and at χ = 0 imposes the
constraints

α > 0 ∧ γ(ω1, ω2) > 0, ∀(ω1, ω2) . (B.16)

Reusing the results established above for 2-vev functions, the latter inequality requires

c0 > 0 ∧ c2 > 0 ∧ c1 + 2
√
c0c2 > 0 . (B.17)

Then, taking V as a quadratic polynomial in χ2, positivity requires its roots to be either
complex or negative. Defining15 ∆ = 4αγ − β2, the condition to have either complex roots
or non-positive roots reads

∆(ω1, ω2) > 0 ∨
(

∆(ω1, ω2) ≤ 0 ∧ β(ω1, ω2) > 0
)
, ∀(ω1, ω2) , (B.18)

or, more concisely

∆(ω1, ω2) > 0 ∨ β(ω1, ω2) > 0, ∀(ω1, ω2) . (B.19)

The quantity ∆(ω1, ω2) can be generically expressed as

∆(ω1, ω2) = 4αγ(ω1, ω2)− β(ω1, ω2)2

= a0ω
4
1 + a1ω

3
1ω2 + a2ω

2
1ω

2
2 + a3ω1ω

3
2 + a4ω

4
2

=
(
a0 + a1X + a2X

2 + a3X
3 + a4X

4
)
ω4

1

= ∆̃(X)ω4
1 , (B.20)

and in practice, when ω2 6= 0, one only needs to consider the simplified stability constraint

∆̃(X) > 0 ∨ β̃(X) > 0, ∀X . (B.21)

Since β̃ and ∆̃(X) are polynomials of respective degree 2 and 4 in X, one could deter-
mine analytic conditions for them to be positive for all X. However, we insist that the
constraint (B.21) is not equivalent to the following:(

∆̃(X) > 0, ∀X
)
∨
(
β̃(X) > 0, ∀X

)
, (B.22)

since the latter is only a sufficient condition for the former to be satisfied. Instead, one
should simultaneously inspect the shape of both polynomials in terms of their number of real
roots and the sign of their leading coefficient, in order to identify the regions where either

15Note the negative sign compared to the usual definition of the quadratic discriminant.
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one or the other is positive. Such a case-by-case study is readily performed, as reported in
Table B.1. Here, since we aim at determining the conditions of a stable potential (B.13),
we will consider that all other necessary conditions determined previously must hold. In
particular, (B.16) holds. Hence, a useful observation to make is that if β̃ = 0, then

∆̃(X) = 4αγ̃(X) > 0 . (B.23)

In other words, ∆̃(X) is always strictly positive at the locations of the roots of β̃. This
greatly reduces the number of possibilities when inspecting the shapes of the two polynomials.
Overall, ∆̃ can have either 0, 2 or 4 real roots, with a positive or negative leading coefficient
a4., while β̃ can have either 0 or 2 real roots with a positive or negative leading coefficient b2.
At this point, a comment is worth making: we do not consider the cases of multiple roots,
nor those of a vanishing leading coefficient. The reason is that, at the initial scale where
potential stability must be asserted, the couplings (and therefore the value of the coefficients
appearing in the polynomials) are generated randomly. Hence, exact relations such that a
vanishing discriminant or coefficient will never occur. On the other hand, such quantities
can very well vanish at a given scale along the RG-flow and possibly trigger spontaneous
breaking of the model. Such situations are described in subsection B.3 below.

Table B.1: Realisation of the stability constraint (B.21), depending on the number of roots
of the polynomials ∆̃ and β̃ and the sign of their leading coefficient. We write ∆(n)s and
β(n)s to respectively denote the number n of roots and the sign s of the leading coefficient
of the polynomials ∆̃ and β̃. The roots of ∆̃ are noted δi with δ1 < · · · < δn, those of β̃ are
noted βi with β1 < β2. Cases where the stability condition (B.21) is satisfied for any values
of the roots are referred to as Stable, and cases where the condition cannot be satisfied are
referred to as Unstable. For cases where the realisation of (B.21) depends on the value of
the roots, the additional constraints to be satisfied by them are reported. Finally, two cases
never occur because of the constraint of a positive ∆̃ at the location of the roots of β̃.

β(0)+ β(0)− β(2)+ β(2)−

∆(0)+ Stable Stable Stable Stable
∆(0)− Stable Unstable / /
∆(2)+ Stable Unstable β2 < δ1 ∨ β1 > δ2 β2 < δ1 ∧ β1 > δ2

∆(2)− Stable Unstable β1 > δ1 ∧ β2 < δ2 Unstable
∆(4)+ Stable Unstable β2 < δ1 ∨ β1 > δ4 ∨

(
β1 > δ2 ∧ β2 < δ3

)
β1 < δ1 ∨ β2 > δ4

∆(4)− Stable Unstable
(
β1 > δ1 ∧ β2 < δ2

)
∨
(
β1 > δ3 ∧ β2 < δ4

)
Unstable

Finally, although this procedure can readily be performed numerically, we review here the
analytical conditions allowing to determine the number of real roots of the quartic polynomial
∆̃ [62–64]. Those conditions will also help understand how the stability condition (B.21)
can be violated along the RG-flow. The main quantity of interest here is the discriminant
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D of the polynomial ∆̃:

D = 256a3
0a

3
4 − 4a3

1a
3
3 − 27a2

0a
4
3 + 16a0a

4
2a4 − 6a0a

2
1a

2
3a4 − 27a4

1a
2
4

− 192a2
0a1a3a

2
4 − 4a3

2(a0a
2
3 + a2

1a4) + 18a2(a1a3 + 8a0a4)(a0a
2
3 + a2

1a4)

+ a2
2(a2

1a
2
3 − 80a0a1a3a4 − 128a2

0a
2
4) .

(B.24)

We will not show here the expression of D as a function of α, bi, ci here since it is rather
lengthy. However, we make the important remark that

D ∝ α2 , (B.25)

which will help understand the symmetry breaking patterns in the next subsection. The
nature of the roots depend on the sign of D:

D > 0 : The four roots are either all complex or all real (B.26)

D = 0 : There exists multiple roots (B.27)

D < 0 : Two roots are complex, the other two are real (B.28)

In the first case, D > 0, the nature of the roots can be determined by defining the following
additional quantities [64]

Q = 8a2a4 − 3a2
3 , R = 64a0a

3
4 + 16a2a

2
3a4 − 16a2

4(a2
2 + a1a3)− 3a4

3 , (B.29)

such that the four roots are complex if either Q > 0 or R > 0. In summary, we have:

D > 0 ∧
(
Q > 0 ∨R > 0

)
: No real roots (B.30)

D < 0 : Two real roots (B.31)

D > 0 ∧
(
Q ≤ 0 ∧R ≤ 0

)
: Four real roots (B.32)

B.3 Stability violation for 3-vev manifolds

As previously done in the case of 2-vev manifolds, we now inspect the different ways in
which the stability conditions of 3-vev manifolds can be violated. Obviously, more cases
will have to be considered here, due to the richer structure of the potential and its stability
conditions.

Case 1: α = 0. The potential simplifies as

V (χ, ω1, ω2) = β(ω1, ω2)χ2 + γ(ω1, ω2) (B.33)

We consider that all other stability condition are satisfied. In particular, γ is always positive,
and since α = 0, one has ∆(ω1, ω2) = −β(ω1, ω2)2. Therefore, according to Eq. (B.19), β is
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always positive, and V can only vanish in the region where ω1 = ω2 = 0. In this case, the
flat direction lies along  χ

ω1

ω2

 = λ

1

0

0

 . (B.34)

This corresponds to a symmetry breaking exclusively driven by the vev χ. Specialising this
result to the SM vacuum manifold (4.7) with χ = χ5 (or equivalently χ = χR) yields a
breaking towards the SU (5) subgroup.

Case 2: c0 = 0 or c2 = 0. Let us first consider the case where c0 = 0. In this case, the
quantity γ(ω1, ω2) vanishes along the flat direction(

ω1

ω2

)
= λ

(
1

0

)
, (B.35)

and according to (B.19), β(ω1, ω2) > 0. The potential simplifies as

V (χ, ω1, ω2) =
(
αχ2 + β(ω1, ω2)

)
χ2 , (B.36)

and can only vanish if χ = 0. Hence, the flat direction is χ

ω1

ω2

 = λ

0

1

0

 . (B.37)

This is a breaking triggered by the vev ω1 exclusively. Similarly, in the case where c2 = 0,
the flat direction is given by  χ

ω1

ω2

 = λ

0

0

1

 (B.38)

and corresponds to a breaking driven by ω2. Considering the SM vacuum manifold (4.7) with
ω1 = ωB, ω2 = ωR and either χ = χ5 or χ = χ5, the above cases respectively correspond to
the 3C2L2R1B−L and 4C2L1R breakings.

Case 2: c1 + 2
√
c0c2 = 0. In this case, the quantity γ has a flat direction along(

ω1

ω2

)
= λ

(
c

1/4
2

± c1/4
0

)
. (B.39)

Here again, the potential takes the form (B.36). Therefore the flat directions are given by χ

ω1

ω2

 = λ

 0

c
1/4
2

± c1/4
0

 (B.40)
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and the breaking is driven by the vevs ω1 and ω2. In the SM vacuum, this corresponds to
the 3C2L1R1B−L breaking16.

Case 3: a0 = 0 or a4 = 0. Here we consider the possibility that Eq. (B.19) gets violated, in
the particular situation where the leading coefficient of either ω4

1 or ω4
2 vanishes along the

RG-flow. Starting with the case where a0 = 0, we have

∆(ω1, ω2) =
(
a1ω

3
1 + a2ω

2
1ω2 + a3ω1ω

2
2 + a4ω

3
2

)
ω2 . (B.41)

Hence, ∆ clearly vanishes when ω2 = 0. We note that other roots with ω1, ω2 6= 0 may exist,
but this situation is taken into account in the more general Case 4 below. Here we restrict
the discussion to the case where ω2 = 0. In this case, we have

a0 = 4αc0 − b20 = 0 , (B.42)

β(ω1, 0) = b0ω
2
1 , (B.43)

so the full potential simplifies as

V (χ, ω1, 0) =
(√
αχ2 ±

√
c0ω

2
1

)2
. (B.44)

Since α > 0 and c0 > 0, the only case yielding a flat direction corresponds to b0 < 0, and
hence

V (χ, ω1, 0) =
(√
αχ2 −

√
c0ω

2
1

)2
. (B.45)

In this case, the flat directions are given by χ

ω1

ω2

 = λ

 c
1/4
0

±α1/4

0

 . (B.46)

Reiterating the above calculations in the case where a4 = 0 yields the following flat directions χ

ω1

ω2

 = λ

 c
1/4
0

0

±α1/4

 . (B.47)

When considering the SM vacuum manifold, such flat directions correspond to a complete
breaking of SO(10) towards the SM, despite the fact that one of the ωi vanishes.

Case 4. Whereas all previous cases involved only one or two of the vevs, we now turn to
the possibility of violating the stability conditions in a non trivial way, where none of the
vevs vanishes. Concretely, it means that condition (B.19) or, equivalently, (B.21) needs to
be violated along the RG-flow, in a case where χ, ω1, ω2 6= 0. A closer look at (B.21) shows

16However, for reasons explained in Sec. 4.2.3, in this case the actual breaking direction is SU (5)× U (1)

since in practice one always has η =
√

2/3.

– 46 –



that the transition from a stable to an unstable potential can only occur at a given value of
X in the two following pictures

∆̃(X) > 0 ∧ β̃(X) < 0 −→ ∆̃(X) = 0 ∧ β̃(X) < 0 −→ ∆̃(X) < 0 ∧ β̃(X) < 0 , (B.48)

∆̃(X) < 0 ∧ β̃(X) > 0 −→ ∆̃(X) < 0 ∧ β̃(X) = 0 −→ ∆̃(X) < 0 ∧ β̃(X) < 0 . (B.49)

However, as mentioned before, ∆̃(X) can only be positive when evaluated a root of β̃.
This observation allows to rule out the scenario (B.49), making Eq. (B.48) the only way of
generating a flat direction. Furthermore, the change of sign of ∆̃(X) due to a sign flip of its
leading coefficient was already covered in Case 3 above, so we can discard this possibility.
The only remaining way to achieve the transition (B.48) is for ∆ to acquire a multiple root
at some value of X. This happens when the discriminant D of ∆̃ vanishes at some RG-scale.
The multiple real root that appears will be denoted δ, and we have

X = δ ⇒ ω2 = δω1 . (B.50)

Since ∆̃(δ) = ∆(ω1, δω1) = 4αγ(ω1, δω1)−β(ω1, δω1)2 = 0 and β(ω1, δω1) < 0, the potential
takes the form

V (χ, ω1, δω1) =
(√

αχ2 −
√
γ(ω1, δω1)

)2
, (B.51)

where √
γ(ω1, δω1) =

√
c0 + c1δ2 + c2δ4 ω2

1 . (B.52)

This means in turn that the potential vanishes if

χ = ±
(
c0 + c1δ

2 + c2δ
4

α

)1/4

ω1 , (B.53)

so one concludes that the flat directions are given by χ

ω1

ω2

 = λ

±
(
c0+c1δ2+c2δ4

α

)1/4

1

δ

 . (B.54)

This completes our discussion on the stability of 1-, 2- and 3-vev manifolds and on the
classification of the possible flat directions generated by the RG evolution of the quartic
couplings. The symmetry breaking patterns occurring in each case identified above are
summarised in Table 1.

C A quantitative measure of perturbativity

In this appendix, we develop a method allowing to obtain a quantitative measure of
perturbativity based on the comparison of the size of the one- and two-loop contributions to
the β-functions. In [51], one of us has proposed a simple perturbativity criterion translating,
using definition (E.1), into ∣∣∣β(2)(gi)

∣∣∣ < 1

2

∣∣∣β(1)(gi)
∣∣∣ , ∀gi (C.1)
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where gi, i = 1, . . . , N generically denotes all the couplings of the theory. Note that
the inclusion of the factor 1

2 is rather arbitrary, since the boundary (in the space of the
couplings of the model) between the perturbative and non-perturbative regimes is anyways
equivocal. This being said, the above criterion allows in particular to systematically detect
the occurrence of Landau poles in the RG-flow, indicating a breakdown of perturbation
theory.

While this criterion was successfully applied in [51] as a way to phenomenologically
constrain (extensions of) the SM, it comes with a caveat: A change of sign in the one-loop
β-function of any of the couplings systematically violates Eq. (C.1), even in a region of the
coupling space where the regime is clearly perturbative. To circumvent this problematic
feature, we propose a generalisation of the above criterion simultaneously involving all
the couplings of the theory. Letting p be a positive integer and α > 0, this generalised
perturbativity criterion reads(

N∑
i=1

∣∣∣β(2)(gi)
∣∣∣p)1/p

< α

(
N∑
i=1

∣∣∣β(1)(gi)
∣∣∣p)1/p

, (C.2)

or, in a more compact form, ∥∥∥β(2) (g)
∥∥∥
p
< α

∥∥∥β(1) (g)
∥∥∥
p
, (C.3)

where ‖·‖p denotes the usual `p-norm and where

β(n) (g) =


β(n)(g1)

...
β(n)(gN )

 . (C.4)

The free parameters p and α conveniently allow to adapt the (non-)conservative property of
the criterion. As a particular case of (C.3), note that taking p→∞ yields

max
i

∣∣∣β(2)(gi)
∣∣∣ < αmax

i

∣∣∣β(1)(gi)
∣∣∣ (C.5)

whereas p = 1 gives
N∑
i=1

∣∣∣β(2)(gi)
∣∣∣ < α

N∑
i=1

∣∣∣β(1)(gi)
∣∣∣ . (C.6)

In a theory with a single coupling g, taking in addition α = 1
2 in the above expression allows

to recover the formula ∣∣∣β(2)(g)
∣∣∣ < 1

2

∣∣∣β(1)(g)
∣∣∣ , (C.7)

which coincides with the original criterion (C.1). As a final remark, we have observed that,
in practice, the impact of a change in the value of p can be roughly compensated by a
change in the value of α. Consequently, in the present analysis we have chosen to fix p = 1,
therefore using (C.6) as a quantitative measure of the perturbativity of the studied models.
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D Scalar potential for the considered models

In this appendix, we provide the expression of the most general (renormalisable) scalar
potential for the 10H ⊕ 16H ⊕ 45H SO(10) model. This will allow us in turn to specialise
this expression to the two simplified models considered in this work, where the scalar sector
is reduced to 16H ⊕ 45H and 45H respectively.

D.1 Definitions and conventions

The fundamental 10H multiplet is noted Hi in the following. Based on the decomposition

10⊗ 10 = 54S ⊕ 45A ⊕ 1 , (D.1)

the adjoint 45H field is conveniently expressed as an antisymmetric 10× 10 matrix, noted
φij . Finally, reusing the notations from [], the reducible 32-dimensional spinor field is noted
Ξ and can be decomposed under 32 = 16R ⊕ 16L as

Ξ =

(
χ

χc

)
. (D.2)

The generators of the reducible 32-dimensional representation are given by

Sij =
1

4
√

2i
[Γi,Γj ] =

1

2

(
σij 0

0 σ̃ij

)
(D.3)

with i, j = 1, . . . , 10. The Γi’s are 32× 32 matrices satisfying the anticommutation relations

{Γi,Γj} = 2δij132 , (D.4)

characteristic of a Clifford algebra. An explicit form for Γi will not be provided here but
can be found in []. Note that, as compared to [], an additional factor of

√
2 was included in

the denominator of (D.3) (and in the definition of σij) in order to match the convention
where the Dynkin index of 16 equals 2 (instead of 4). Right- and left-handed projectors P+

and P− can be constructed such that

P+Ξ =

(
χ

0

)
≡ χ+, P−Ξ =

(
0

χc

)
≡ χ− . (D.5)

We note in passing that the spinor field χc is obtained from a conjugation operation

χc = Cχ, C ∈ 16SO(10) , (D.6)

characteristic of the discrete left-right symmetry D ∈ SO(10) referred to as D-parity in the
literature []. Finally, it will be useful to construct the auxiliary adjoint fields

Φ16 =
1

4
σijφ

ij and Φ32 =
1

2
Sijφ

ij . (D.7)

in order to construct the various gauge invariant operators in a notation adapted to the
presence of a scalar spinorial representation.
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D.2 Scalar potential for the 10H ⊕ 16H ⊕ 45H and 45H models

With the above definitions at hand, we may now write down the most general renormalisable
scalar potential built from the scalar representations 10H , 16H and 45H :

V (H,χ, φ) = µ1HiH
i + µ2 χ

†χ+ µ3 Tr
(
Φ2

16

)
+ τ1

(
χT
−Γiχ+

)
H i + τ∗1

(
χ†+Γiχ

∗
−
)
H i + τ2 χ

†Φ16χ

+ Λ1 Tr
(
Φ2

16

)2
+ Λ2 Tr

(
Φ4

16

)
(D.8)

+ Λ3

(
HiH

i
)2

+ Λ4

(
HiH

i
)

Tr
(
Φ2

16

)
+ Λ5HiHj Tr

(
ΓiΦ32ΓjΦ32

)
+ Λ6 (χ†χ)2 + Λ7

(
χ†+Γiχ−

)(
χ†−Γiχ+

)
+ Λ8 (χ†χ) Tr

(
Φ2

16

)
+ Λ9 χ

†Φ2
16χ

+ Λ10 (HiH
i)(χ†χ) .

It is worth noticing that in the limit τ1 → 0, the above scalar potential is invariant under a
global U (1) transformation under which only 16H is charged17, i.e. under

χ→ eiαχ . (D.9)

Finally, the 10H multiplet couples to fermions ψ ∼ 16F through the Yukawa term

− LY = Y10

(
ψT
−Γiψ+

)
H i + h.c. , (D.10)

where ψ± was defined similarly to χ± (see Eq. (D.5)).

D.3 Scalar potential for the 16H ⊕ 45H model

We now specialise expression (D.8) to the case of the simplified model considered in this
work, where the scalar sector only consists of 16H⊕45H . Discarding in addition the relevant
operators in order to achieve scale invariance at the classical level, we write

V (χ, φ) =
λ1

4
Tr
(
Φ2

16

)2
+ λ2 Tr

(
Φ4

16

)
+ 4λ6 (χ†χ)2 + λ7

(
χ†+Γiχ−

)(
χ†−Γiχ+

)
+ 2λ8 (χ†χ) Tr

(
Φ2

16

)
+ 8λ9 χ

†Φ2
16χ .

(D.11)

We note that the normalisation of the various operators is arbitrary and that the six quartic
couplings λi were defined such that perturbativity is lost around λi & 1. Our notation and
conventions translate to those of [5, 21, 47] according to:

λ1 ↔ 4a1, λ2 ↔ a2, λ6 ↔
λ1

16
, λ7 ↔

λ2

4
, λ8 ↔ α, λ9 ↔

β

4
. (D.12)

Following the comment made above, the absence of relevant operators in (D.11) implies
invariance under the U (1) global symmetry (D.9). Finally, the scalar potential for the 45H

model simply reads

V (φ) =
λ1

4
Tr
(
Φ2

16

)2
+ λ2 Tr

(
Φ4

16

)
. (D.13)

17Note that this global symmetry could be restored for τ1 6= 0 by complexifying and assigning a U (1)

charge to the 10H multiplet. Invariance of the Yukawa term (D.10) would in turn require to give a charge
to the fermionic 16F multiplet.
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E β-functions

The β-functions for the couplings of the three models presented in the previous section
were computed up to the two-loop level using the tool PyR@TE 3 [16]. We report here the
obtained expressions, first in the case of the 10H ⊕ 16H ⊕ 45H model18, then in the case of
the simplified 16H ⊕ 45H model. In the following, we use the convention

β (X) ≡ µdX
dµ
≡ 1

(4π)2β
(1)(X) +

1

(4π)4β
(2)(X) . (E.1)

E.1 10H ⊕ 16H ⊕ 45H model

We provide below the one-loop β-functions for the full 10H ⊕ 16H ⊕ 45H model.

Gauge coupling.

β(1)(g) = −139

6
g3 (E.2)

Yukawa coupling.

β(1)(Y10) = −24Y10Y
∗

10Y10 + 64 Tr (Y10Y
∗

10)Y10 −
135

4
g2Y10 (E.3)

Quartic couplings.

β(1)(Λ1) = 1696Λ2
1 + 412Λ1Λ2 +

279

8
Λ2

2 + 20Λ2
4 + 48Λ4Λ5 + 112Λ2

5 + 64Λ2
8

+ 4Λ8Λ9 − 96Λ1g
2 +

27

16
g4

(E.4)

β(1)(Λ2) = 384Λ1Λ2 − 4Λ2
2 − 512Λ2

5 + Λ2
9 − 96Λ2g

2 − 3g4 (E.5)

β(1)(Λ3) = 144Λ2
3 + 360Λ2

4 + 864Λ4Λ5 + 1440Λ2
5 + 16Λ2

10 − 54Λ3g
2 +

27

8
g4

+ 256Λ3 Tr (Y10Y
∗

10)− 256 Tr (Y10Y
∗

10Y10Y
∗

10)
(E.6)

β(1)(Λ4) = 1504Λ1Λ4 + 1728Λ1Λ5 + 206Λ2Λ4 + 276Λ2Λ5 + 96Λ3Λ4 + 96Λ3Λ5

+ 32Λ2
4 + 768Λ2

5 + 64Λ10Λ8 + 2Λ10Λ9 − 75Λ4g
2 +

15

8
g4

+ 128Λ4 Tr (Y10Y
∗

10)

(E.7)

β(1)(Λ5) = 64Λ1Λ5 − 24Λ2Λ5 + 16Λ3Λ5 + 64Λ4Λ5 − 192Λ2
5 − 75Λ5g

2 − 9

16
g4

+ 128Λ5 Tr (Y10Y
∗

10)
(E.8)

β(1)(Λ6) = 80Λ2
6 + 160Λ6Λ7 + 320Λ2

7 + 1440Λ2
8 + 90Λ8Λ9 +

105

32
Λ2

9 + 20Λ2
10

− 135

2
Λ6g

2 +
315

32
g4

(E.9)

β(1)(Λ7) = 24Λ6Λ7 +
3

8
Λ2

9 −
135

2
Λ7g

2 +
9

8
g4 (E.10)

18Although this model was not studied in the present work, we provide the corresponding set of β-functions
since we believe that these might be useful to the reader.
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β(1)(Λ8) = 1504Λ1Λ8 + 45Λ1Λ9 + 206Λ2Λ8 +
93

16
Λ2Λ9 + 68Λ6Λ8 + 2Λ6Λ9

+ 80Λ7Λ8 + 2Λ7Λ9 + 32Λ2
8 +

3

8
Λ2

9 + 20Λ10Λ4 + 24Λ10Λ5

− 327

4
Λ8g

2 +
9

8
g4

(E.11)

β(1)(Λ9) = 64Λ1Λ9 + 20Λ2Λ9 + 4Λ6Λ9 + 16Λ7Λ9 + 64Λ8Λ9 + 17Λ2
9

− 327

4
Λ9g

2 + 12g4
(E.12)

β(1)(Λ10) = 1440Λ4Λ8 + 45Λ4Λ9 + 1728Λ5Λ8 + 54Λ5Λ9 + 96Λ10Λ3 + 68Λ10Λ6

+ 80Λ10Λ7 + 8Λ2
10 −

243

4
Λ10g

2 +
27

8
g4 + 128Λ10 Tr (Y10Y

∗
10)

(E.13)

Scalar mass and cubic couplings.

β(1)(µ1) = 96Λ3µ1 + 32Λ10µ2 + 720Λ4µ3 + 864Λ5µ3 − 27g2µ1

+ 128µ1 Tr (Y10Y
∗

10) + 64 |τ1|2
(E.14)

β(1)(µ2) =
45

4
τ2

2 + 40Λ10µ1 + 68Λ6µ2 + 80Λ7µ2 + 1440Λ8µ3 + 45Λ9µ3

− 135

4
g2µ2 + 80 |τ1|2

(E.15)

β(1)(µ3) = 40Λ4µ1 + 48Λ5µ1 + 64Λ8µ2 + 2Λ9µ2 + 1504Λ1µ3 + 206Λ2µ3

− 48g2µ3 + τ2
2

(E.16)

β(1)(τ1) = 4Λ6τ1 + 64Λ7τ1 + 8Λ10τ1 −
189

4
g2τ1 + 64τ1 Tr (Y10Y

∗
10) (E.17)

β(1)(τ2) = 4Λ6τ2 − 48Λ7τ2 + 32Λ8τ2 + 29Λ9τ2 −
231

4
g2τ2 (E.18)

E.2 16H ⊕ 45H and 45H models

We provide below the β-functions for the simplified 16H ⊕ 45H model up to the two-loop
level, the two-loop contributions being used in the present analysis to establish a quantitative
measure of perturbativity (see Appendix C).

Gauge coupling.

β(1)(g) = −70

3
g3 (E.19)

Quartic couplings.

β(1)(λ1) = 424λ2
1 + 412λ1λ2 +

279

2
λ2

2 + 256λ2
8 + 128λ8λ9 − 96g2λ1 +

27

4
g4 (E.20)

β(1)(λ2) = 96λ1λ2 − 4λ2
2 + 64λ2

9 − 96g2λ2 − 3g4 (E.21)

β(1)(λ6) = 320λ2
6 + 160λ6λ7 + 80λ2

7 + 360λ2
8 + 180λ8λ9 +

105

2
λ2

9

− 135

2
g2λ6 +

315

128
g4

(E.22)
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β(1)(λ7) = 96λ6λ7 + 24λ2
9 −

135

2
g2λ7 +

9

8
g4 (E.23)

β(1)(λ8) = 376λ1λ8 + 90λ1λ9 + 206λ2λ8 +
93

2
λ2λ9 + 272λ6λ8 + 64λ6λ9 + 80λ7λ8

+ 16λ7λ9 + 32λ2
8 + 24λ2

9 −
327

4
g2λ8 +

9

8
g4

(E.24)

β(1)(λ9) = 16λ1λ9 + 20λ2λ9 + 16λ6λ9 + 16λ7λ9 + 64λ8λ9 + 136λ2
9

− 327

4
g2λ9 +

3

2
g4

(E.25)

The β-functions of λ1,2 in the case of the 45H -only model are simply found by taking the
limit λ6,7,8,9 → 0 in the above expressions. Note however that the gauge coupling β-function
reduces to

β(1)(g) = −24g3 . (E.26)
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