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Tree-level processes in very special relativity

R. Bufalo and T. Cardoso e Bufalo'

Departamento de Fisica, Universidade Federal de Lavras,
Caixa Postal 3037, 37200-900 Lavras, Minas Gerais, Brazil

® (Received 11 November 2019; revised manuscript received 25 November 2019; published 19 December 2019)

In this paper, we discuss the Bhabha and Compton scattering for the quantum electrodynamics defined
in the framework of SIM(2) very special relativity (VSR). The main aspect of the VSR setting is that it
admits different types of interactions appearing in a nonlocal form due to the modified gauge invariance.
We explore the richness of these new couplings in the evaluation of the differential cross section for these
tree-level processes. We assess the behavior of the leading VSR Lorentz violation modifications by
considering some special limits for the Bhabha and Compton cross section expressions.
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I. INTRODUCTION

In the description of nature, our experimentally verified
theories, such as the Standard Model (SM) of particles and
general relativity, are fundamentally understood in terms
of gauge invariance and spacetime symmetries. Due to its
importance in the formulation of the given field theories,
the validity of these exact symmetries has been scrutinized
by a number of precision tests [1-3]. In one hand, any
deviation from these symmetries is expected to signal
manifestations of physics beyond the Standard Model, that
are hoped to be revealed in high-energy experiments. On
the other hand, physical phenomena that are not adequately
explained by the known theories, e.g., neutrino masses,
matter-antimatter asymmetry, quantum gravity, etc. [4], can
be suitably described by the addition of new degrees of
freedom (d.o.f.), that ultimately are governed by a new
symmetry principle.

In recent years, we have seen a great amount of interest
in field theories formulated in a Lorentz violating frame-
work [1]. In particular, the most interesting proposals are
those that preserve the basic elements of special relativity,
because they are in agreement with well-understood phys-
ics, but additionally these modified models allow the
description of new and unexplored phenomena. Within
this context, a framework satisfying the above criteria is the
Cohen and Glashow very special relativity (VSR) [5,6].
The main aspect in the VSR proposal is that the laws of
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physics are invariant under the subgroups of the Poincaré
group preserving the basic elements of special relativity. In
the VSR framework, we found a phenomenologically rich
scenario because it presents a modified gauge symmetry,
admitting a variety of new gauge invariant interactions.
Many interesting theoretical and phenomenological aspects
of VSR effects have been extensively discussed [7—13].
In relation to the kinematics of the VSR framework,
there are two subgroups satisfying the prior requirements,
namely, the HOM(2) (with three parameters) and the
SIM(2) (with four parameters). The former is the so-called
Homothety group, generated by Ty =K, +J,, T, =K, —J,,

and K, (J and K are the generators of rotations and
boosts, respectively). The latter, called the similitude group
SIM(2), is the HOM(2) group added by the J, generator.
Moreover, the symmetry groups SIM(2) and HOM(2)
have the property of preserving the direction of a lightlike
four-vector n, by scaling, transforming as n — ¢“n under
boosts in the z direction. This feature implies that theories
invariant under one of these two subgroups have a
preferred direction in the Minkowski spacetime, where
Lorentz violating terms can be constructed as ratios of
contractions of the vector n, with other kinematic
vectors [5].

On the dynamical side of the VSR framework, we can
make use of the last comment on how to write Lorentz
violating but VSR invariant terms, to construct VSR
covariant field theories. As an illustration, one can simply
write down a SIM(2) VSR-covariant Dirac equation in
the form

i

(i 0, = m )y (x) = 0, (1)

where the wiggle derivative operator is defined by 5/4 =
6” + %%nﬂ First, we see that the Lorentz violation
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appears in a nonlocal form,' the parameter m sets the scale
for the VSR effects, and the preferred null direction is
chosen as n, = (1,0,0,1).

We can highlight an import feature of the VSR frame-
work in field theories that is the addition of a gauge
invariant massive mode, by presenting the SIM(2) VSR

Maxwell equations @,F"” = 0, where the field strength is
defined in terms of the wiggled derivative as F w = 5MA,, -
a,AM [14]. These equations can be written in the VSR
Lorenz condition 3MA" = 0, resulting in

A, =0— (O+m?)A, =0, (2)

showing that each component of the gauge field satisfies a
massive Klein-Gordon equation. This discussion is based
on the fact that the Abelian gauge field has a VSR modified
transformation law 6A, = 5ﬂA. In this case, the extended
VSR gauge symmetry provides a suitable framework to
describe massive modes without changing the number of
physical polarization states of the photon [14,15]. It is
worth noting that massive modes of photons and their
stability are a recurrent subject of analysis in recent
literature [16,17].

Among the most interesting works analyzing the
phenomenological aspects of VSR effects, we can refer
to the scattering of fermions by an external field and
bremsstrahlung in the QED [12], one-loop corrections of
QED [11], pion and kaon decay [10], and the electroweak
theory [7,8]. However, since we have the presence of VSR
nonlocal terms implying massive modes and new gauge
invariant couplings, there are still further scattering proc-
esses involving electrons, such as Bhabha, Mgller, and
Compton, that could be investigated in this Lorentz
violating framework in order to highlight the behavior of
the VSR effects. In this sense, we believe that the present
analysis will complement the study of phenomenological
aspects of QED within the framework of VSR. Recently,
many works have discussed electron scattering processes in
order to elucidate the physical aspects of different Lorentz
violating scenarios [18-25]. Hence, the main purpose of the
present work is the discussion and evaluation of the cross
section for the Bhabha and Compton scattering processes
defined in the VSR quantum electrodynamics.

In this paper, we examine the Lorentz violating VSR
effects in the quantum electrodynamics in the framework
of the Bhabha and Compton scattering. In Sec. II, we
establish the main aspects related to the SIM(2) VSR gauge
invariance, presenting the dynamics and completeness
relations for the fermion and gauge fields, necessary for
the evaluation of the Feynman amplitudes in the VSR
electrodynamics. We compute in detail the VSR leading

'We will discuss below the subtle points involving the
perturbative analysis of VSR nonlocal couplings.

modifications of the cross section for the Bhabha and
Compton scattering in Sec. III. In order to highlight the
VSR effects, we evaluate the Bhabha cross section in the
high-energy limit. Moreover, since the Compton energy
shift, coming from energy-momentum conservation, is
modified in the VSR framework, we have to revise and
present a new expression for the differential cross section
consistent with VSR. The profile of the VSR modifications
in the Compton scattering is discussed in the limit of low-
energy and high-energy photons, where corrections are
found for the Thomson cross section and Klein-Nishina
formula. In Sec. IV, we summarize the results and present
our final remarks.

II. GAUGE FIELDS IN VSR

We start by considering a Lagrangian density for the
gauge and SIM(2) VSR-invariant QED written as

1. . 1 0
L= 4 " = 2a (auA”)z WiV —mely,  (3)

where we have chosen the VSR modified Lorenz condition
Q[A] = 9,A" = 0 and the field strength is defined in terms
of the wiggled derivative as F,,, = 0,4, — 0,A,.. The VSR
invariance expressed in terms of the wiggle derivative éﬂ =

o, + %% n, imposes a change in the gauge structure for the
QED, in this sense the minimal coupling among the
fermion and photon fields is determined by a new gauge
invariant covariant derivative V. This new operator can be
determined by making use of the SIM(2) gauge trans-
formation 6A, = 5ﬂA and imposing the known transfor-
mation law §(V,y) = iA(V,y) valid for any charged
field w. Under these conditions, one can determine that
the expression

V= Dy + 1 (4)
= ——n

W WS (n-D) na

satisfies the required properties and we have used the
ordinary covariant derivative D, = 0, — ieA,. Moreover,

this definition reduces to the wiggle derivative 5/4 in the
noninteracting case.

Some important remarks about the expression (4) are in
place. The nonlocal character of term 1/(n.D) in (4)
implies the presence of an infinite number of interactions
(in the coupling e). The Feynman rules for these inter-
actions can be obtained within the Wilson lines approach,
which expresses the respective terms in a suitable form
with N =1,2,3, ... legs of photon fields [7], making the
perturbative analysis workable. In addition to the rule for
the cubic (ywA) vertex used in the computation of the
Bhabha and Compton scattering processes, we must con-
sider an additional Feynman rule for the Compton process
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in the VSR setting, the quartic (pwAA) vertex, with
two photon external legs. This nonlocal quartic vertex in
the VSR electrodynamics is similar to the presence of
the seagull diagram for the Compton scattering in the
scalar QED.

The 1PI vertex function (w(p;)w(p>)A(p3)) can be
obtained from the Lagrangian density (3), resulting in [7]

m>  (y.n)n

N(p1, pa. p3) = —ie {7" + —m} (5)

whereas the vertex function for the (w(p;)w(p,)A(p3)
A(py)) reads [7]

» __ieem? (ny)ntn® !
E*(py. P2y 3. Pa) = 2 (n.ps3)(n.ps) [(n.p1)
1 1
+ (n.p2)  n.(pi+ p3)
_;] (6)
n.(py+ps)|

Observe that the VSR contribution to these vertices has a
nonlocal form. Moreover, the free field solutions are [8]

-x éﬂ’; 2B P
o

+di(p)v,(p)e* (7)

V P+ p?, with

and the fermion dispersion relation E, =
the fermion mass > = m?> + m2, and

&Pk |1 i
=3 \/Z—Zk[aa(k)qi(k)e :
)b~k

+ aj (k)el(=k)e™] (8)

and the photon dispersion relation w; = Vk*> + m?. With
these expressions, we can evaluate the propagator for the
fermionic field

y-p+m,
S(p) = e ©)

and also the propagator for the gauge field

: nt
iD*(p) =7 (10)
in the Feynman gauge a = 1, observing that the gauge
propagator has a massive pole k> = k* — m?2. In this case,
we see that besides giving massive modes for the fields,
VSR appears as nonlocal contributions in the vertices (5)
and (6), and propagator (9). In particular, the photon

propagates massive modes in a gauge invariant framework
without changing its number of physical d.o.f. [13,14].

More importantly, in order to evaluate the Feynman
amplitude for the Bhabha and Compton scattering proc-
esses, we must establish the energy projection operators in
the fermion sector, that are defined as

+y.p
Hi — y p + me , (11)
2m,

so that the completeness relations are written as

y.p+m,
I, (p Z“ (p.8)ity(p,s) =—— om. (12)

- —y.pt+m, p+m,
I, (p Zv p-S)ip(p.s) =—5—=.  (13)

E

2]1

the wiggle momentum is p, = p, —%, so that we

see the presence of a nonlocal factor in the IT* energy
operators.

For the gauge sector, the completeness relation reads
> 1€ (4)e,(4) = —n,, + gauge terms. Although it is not
of our interest, an explicit expression for the polarization

vector €,(4) can be obtained by imposing the wiggled

Lorenz condition ke, =0, or alternatively from the
complementary conditions n.e = 0 and k.e = 0.

III. VSR TREE-LEVEL SCATTERING PROCESSES

Scattering of standard model particles is an important
scenario where deviations from standard physics can be
widely explored, providing a ground and rich framework
for testing many theoretical proposals in QFT. Furthermore,
Bhabha scattering, ¢~ + e™ — ¢~ + e, and Compton
scattering, e~ +y — e~ +y, are the most fundamental
reactions in QED processes, so that its precision data have
been used to obtain bounds in the context of Lorentz
violating models [18,20-23].

A. Bhabha scattering

We start by considering the Bhabha scattering e~ +e™ —
e” +e™; we have two possible processes: the t-channel or
direct process, and the s-channel or annihilation process;
these are depicted in Fig. 1. We shall consider the standard
description for our system: the spin and momenta for
the incoming u,, (p;) and outgoing &, (p,) electrons are
(ri»p1) and (rg, py), respectively, while the spin and
momenta for the incoming ?y,(¢,) and outgoing v,,(g,)
positrons are (s;,q;) and (sy, g,), respectively.

The tree-level amplitude corresponds to the sum of the
above contributions

iM = iM, + iM,, (14)
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where the amplitude corresponding to the t-channel reads

M, = ie’Nyit, (p2)N'(P1.—41)v5,(q2)
X Dy (p1 + q1)0,,(q1)N (=pa2s @2)u,, (p1),  (15)

whereas the amplitude for the s-channel is

M, = —ieszft,f (p2) A (py, pz)uri(pl) t-channel s—channel

X D/w(pl - pz)ﬁsi(ql)/\”(ql, qz)vsf(CIz), (16) FIG. 1. Diagrams contributing to the Bhabha scattering:
(a) photon direct process and (b) pair annihilation process.

with the normalization factor defined as

1 H 2 __ 2 2
O AL o o[ L MY Py
EP] EPz qu EQz TS Tpsf spm spm

Since we are interested in computing the differential Zim*im +7 ZEIR* (18)
cross section for the Bhabha scattering, we shall now SP‘“ Sf’m
compute |i9|? by averaging over the spin of the incoming
particles and summing over the spin of the outgoing  The sum over spins can be evaluated as usual with help of

particles, thus the completeness relations (12) and (13), which yields
e*N?
> P = WTT[A;;(%» 02)(r-G1 = me)No(q1. 92) (7.3 — m,)]
spin me(pl - p2>
X Tr[(y.p1 + me )N (p1. p2)(r-P2 + me)A*(py. )], (19)
also

e*N?
gzm*zm— b Tr[AY (= ps, Gy —m,)A ’
16me( ]32)2(~1+(~]1)2 [ (=p2,92) (7.1 —m,) ,,(611 q>)

spin

X (y.qa = m )N (P1.—q1)(y-D2 + m )N (py. p2)(y.p1 + m,)]. (20)

The remaining two terms can be determined by the substitution (¢; <> —p,) in these two expressions. In order to highlight
the effects from VSR, we shall consider the behavior of the scattering process in the high-energy limit, that corresponds to
take m2 = 0 in our calculations. In this case, we proceed to the evaluation of the y matrices traces using the standard
techniques, and we find that the squared Feynman amplitude reads

1 . &t J J J
: M — { —— + 2 - : ’ 2!
12 2 =G G- ik ar G p T ) o

i\ Tp.Sy pz)

where we have defined the following quantities as the annihilation term:

T\ = 32(G2-92)(q1-P1) + 32(P1-82)(q1-P2) + m*E[(G2-P2) (n.G1) (n.p1) + (n.G1)(n.p2)(Ga-P
= 2(P2-P1)(n.32) (n.31)] + m*E[(§1-P2) (n.32) (n.p1) + (1.G2) (n.92)(q1-P1) = 2(32-31) (n.p2) (n. )]
+ m*E2(n.gy)(n.3,) (n.p2) (n.p1) (22)
and the direct term
T2 =32(q2-31)(P2-P1) + 32(P1-G2)(G1-P2) — m*O(G2.G1) (n.p2) (n.py) + (.G ) (n.P2)(G2-P1)
= 2(q1-p1)(n-32)(n.pa)] = m*[(§y.p2) (n.2) (n.p1) + (n.32) (n.31) (P2-P1) = 2(G2-P2) (n:G1) (n-py)]
+m*@*(n.q,)(n.q,) (n.pa) (n.p1) (23)
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and finally the interference term

5.
— (n.3,)(n.p1)(32-P2) + (n.G1)(n-32) (P2-P1) + (1.g1)(n.G2)(P2-P1)
— (n.p1)(n.G1)(P2-2) + (n.p2) (n-P1)(G2-G1) — (n-P2)(n-32)(§1-P1)]
— 8m*@E(n.q;)(n.G,) (n.p2) (n.p1) — 8m*OF (., ) (n.3,) (n.pa) (n.p1) (24)
and by simplicity we have introduced the notation
_ 1 o 1
=T ey raia” O Gepnan) | ops)(ngs) .

Now to cast the expression (21) in a suitable form for evaluation, we consider the kinematic variables in the center-of-
mass (CM) frame, so that we have

{p1 = (E.p) {611 =(£.9) (26)

P2 = (E —1_5) q2 = (E —ZI)

It follows from the energy conservation that |p| = |g|, and we also introduce 6 as the center-of-mass scattering angle, i.e.,
(p.g) = p?*cos 0. Finally, we can proceed to the computation of the differential cross section (in natural units) that in the
CM frame is given by

do E? 1 )

TisSi TfoSf

Hence, using the result (21) in terms of the CM variables, we can express the cross section as follows:

do 2 1 1 3
- = _|=(1 = 221 2 2 1=2 2
<d9>cm SE2 [2( 2°) (L cos’0) = 1oy < 2% )

0 1 1
T )2 <<1 -7*)? [1 + 00545] —3—2)(2(1 — 73 (1 +3cos ) +3—2)(4)

A 2
(sin?¢ + % cos @

1 0 3
- 2(1 = y*)%cos* = — 2<1—— 2))], 28
(sinzg—l—)’;cose) < (1=r) 277 d (28)

where we have introduced the parameter y = ‘2, which controls perturbatively the VSR effects. Finally, in order to illustrate
the corrections due to the VSR nonlocal effects, we express the differential cross section up to y? order, resulting into

do o (1+cos*? 2cos*? 14 cos’d
40 50 T
cm

dQ)..  8E2\  sin g sin? ¢ 2
@ L (1+cos*9cosd 32cos*§(cosd —2) —3cosd— 65
TomX |\~ 60 - 40
8E? sin® 4 32sin*§
1 + 4cos*¢ ., 17
e o0 —~L ), 29
sin?d 16) (29)

where we identify the first term as the usual QED contribution to the Bhabha scattering, while the second term is solely due
to VSR. It is worth noticing that this VSR correction term has a similar structure as the QED one, since it has the
same energy behavior as 1/E? and depends only on the scattering angle 6. In addition to the result found to the Bhabha
process (29), we could use crossing symmetry arguments to also obtain the VSR modified differential cross section to the
Mg ller process, that consists in the electron-electron scattering e~ + e~ — e~ + e
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To conclude the discussion of this section, it is worth to
recall that the study of Bhabha scattering is still relevant
mainly because it is the process employed in determining
the luminosity L at eTe™ colliders [26]. In particular, there
are two kinematical regions of interest for the luminosity
measurements: one is known as the small-angle Bhabha
(SABh) process, which is found at scattering angles below
6°, and is mainly dominated by the t-channel (direct); the
other is the large angle Bhabha (LABh) process, which is
found at scattering angles above 6°, and receives important
contributions from various s-channel (annihilation). We can
assess the VSR correction to Bhabha scattering using the

formula
do\ VSR do\ QED
=|— — - 1.
(=) /(@) 0

Hence, we can calculate the leading effects of the VSR
approach in the SABh process, by expanding Eq. (29) for
small angles € < 1, and find that the correction is

m\? 1
a3, = -16( ) o 31)

where we have introduced by convenience the usual
Mandelstan variable s = (p; + ¢;)? or in the CM frame
\/s = 2E is the center-of-mass energy.

Furthermore, for the LABh process, we see from (29)
that the VSR correction increases as the angle increases,
taking its maximum value at # = 90°. Hence, in this case,
we have that

J

2m?* 4 2E (0 — @) —

where we have used that k; = (wy, I%) and k, =

49 (m\?
W= () @)

These expressions for the VSR deviations 6¥SR can be
discussed in high-precision luminosity measurements. As
illustration, either the SABh process the energy corre-
sponding to the Z resonance, at /s =91 GeV [27], or
the LABh regime, at /s = 10 GeV [28], gives the same
roughly estimate value for the VSR parameter as
m < 10° eV. Actually, this bound is not significant if we
associate the value of m for instance with the photon mass
m, <1078 eV [29]. In this sense, although the nonlocal
effects from VSR give a wealth departure from the usual
QED behavior in the description of the Bhabha scattering,
its experimental data do not set strong bounds upon the
VSR parameter.

B. Compton scattering

Another important process in QED is the Compton
scattering e~ +y — e~ + y and have been used as probe
to study departures from Lorentz symmetry. The usual
expression for the differential cross section cannot be used
since the kinematics is modified, i.e., the Compton energy
shift (energy-momentum conservation) is modified by VSR
effects, and we shall approach this with further detail.

We start by analyzing the kinematics of the Compton
process. It is worth to evaluate this in the laboratory
frame where the electron is at rest initially, p, = (E - 6)
Assuming that p; + k; — p2 + k,, we see that the energy-
momentum conservation p3 = u? for the outgoing electron
yields

2(wpw), — \/a)k —-m \/

(@) /22) We can solve the above expression for @), so that

—m?cosf) =0, (33)

(&2 — k%) cos V1 + k*cos’0

_ (VI + (VI + 2 +x) +
(VI+# +¢)?

where we have introduced the following parameters:

m w )
K=—, §=—k, y=—*. (35)

me me me
Notice that x = m/m, controls the VSR modifications
in the expression (34). In particular, observe that in the

limit k> — 0, Eq. (34) reproduces the known Compton
relation

Wy
1+2(1—cos0)

(—
(Uk—

(36)

— (&2 — k?)cos?0 (34)

As previously mentioned, in order to the compute the
cross section associated with the Compton scattering, it is
necessary to consider the energy shift relation (34) rather
than Eq. (36). To illustrate the main aspects involving the
VSR modification into the differential cross section, we
shall consider the main definition

(277:)4 / . med3p2d3k2
do=———— [ 8(p1+k —pr—k)|iM*—-———=,
(27T)620)k ( 1 1 2 2) | | Ep2 2601<2

(37)

which after some manipulations is written as
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(b)

FIG. 2. Diagrams contributing to the Compton scattering.

= s [ ol = (14 k= ke = )OLE, + o = ) (39)

Now in order to solve the integral over the outgoing photon energy j, we must take into account the energy-momentum
conservation (33) that is present in the argument of the 6 function in (38). This integration can be evaluated with help of
the identity

(39)

[ axatr o) - Zg(""f

i

zeros of f(x

with the identification of f(wj}) with Eq. (33) for the energy-momentum conservation. Hence, after applying the above
identity and some manipulation, we find the following expression for the VSR modified differential cross section for the
Compton scattering:

(ﬁ) . Vi -l (40)
dQ ) ysg 167:5\/1+K + &(1 —cos @) — Fcos@(l—cos@)[ 7(1—0059)} ’

1+~

observe that in the limit k> — 0, this expression reduces to

do 1
dsy, QED 1622

reproducing the known QED result, where wj is given by (36).
With help of the Feynman rules for the vertex function and propagators, we can proceed and compute the amplitude
related to the graphs, Fig. 2, which results into

(41)

M =iM, + M, + M, = iezﬁrf(Pz)Faﬂ“ri(Pl)€a(k1,/1>€ﬁ<k2,/1/), (42)

where we have defined by simplicity the quantity

l—*aﬁ' _ },ﬂy ( + )+ eya +yay'(~l _~~2) +me }’ﬂ m_2 (n'y)nanﬁ 1 + 1 _ 1 _ 1
(P1+ky)? —m? (P1—ky)* —m? 2 (nky)(nky) [(n.py)  (n.p2) n.(pi+k) n(p—k)

(43)
It is easy to see that the “seagull” term 9. in the expression (43) vanishes identically under the VSR gauge

condition (n.e = 0 and k.e = 0), showing that the quartic vertex (6) does not contribute to the Compton scattering. Hence,
we have that

I —

+k +me -
( k) - (Pl—kz) —m;,
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Since we are interested to evaluate the cross section for the Compton scattering for unpolarized photons, in this case we
shall compute |i9|* by taking an average over the initial spin and polarization and sum over the final spin and polarization,

il = T (P + My + ), (45)

risty AN

where completeness relations for the fermion (12) and for the gauge field were used. After some algebraic simplification,
we can compute the trace of the y matrices. We can also make use of the scattering kinematics variables and cast the
expression (45) as the following:

! ! 4425k e
_;;;'l T/El)(zal.icl)[’”e* t(P1-ky) + (Pr-ki) (Pr-ka))
_64# 1 [2m4+m( "’) m( k)]
2m3 (py.ka) (pr-ky) 1 pi-ks
et ) ) )
1 Lt = m2(pr o) + (51K (1 o)) (46)

to—s—
2m (py.ky) (p1.ks)

Remember that the expression (40) for the differential cross section was computed in the laboratory frame; hence, a
necessary last step before its evaluation is to express Eq (46) in terms of the laboratory frame variables. In this case, we have

that p, = (/4,6), and using the definition p, = p, — (” 4> we find that

. 5 5 K.2 /1+K2 K2(§_ /52_,(.2)
(pl'kl):me V1+K€_ - 5 ’ (47)
2= VE -« 2V1 4«
(5 Bo) s V1 + K2 (y = \/r* — k> cos 0) (48)
. = }/ —_ - )
i 2(y = /7> —k*cos6) 2V1 +«?
where we have used the set of parameters defined in (35) by Souen = — L‘Zz 17 8 8 1 (2 —1n2) |k
the simplicity of notation. Notice that the polar angle @ is VSR 215 & 32 8
present in (46) in two forms: in the definition of the energy- (50)

shift relation y in Eq. (34), but also by means of the VSR
anisotropy in the term (p;.k,) expressed in Eq. (48).
Now that we have fully determined the squared Feynman
amplitude in terms of the laboratory variables, obtained by
replacing Egs. (47) and (48) back into (46), we can proceed
to the evaluation of the cross section by means of the

One can observe that the main difference, besides
the presence of the minus sign, which signals a
reduction of the value of the cross section, is that
the VSR contribution has terms that depend on the
incoming photon energy & = w/m,.

integration ¢ = [ sin 0d0dy i < (2) For the case of high photons energies &> 1, we
Let us now consider some particular cases, where the obtain that the leading VSR correction to the total
integration can be easily solved. cross section is
(1) For the case of small photons energies £ < 1, we can 5 . 3
determine the lc?adlng VSR contributions in x? to the 0|§>>1 — % [In 2E—— 4k ( —In2&— _f)]
total cross section as follows: ¢ 2

(51)

Notice that although the VSR contribution has

Sﬂa different energy dependence from the usual QED

where oy = %', is the known classical Thomson term, it respects the point of view that the VSR

Cross section and a = e*/4rx is the fine-structure expansion is seen as a correction and decreases the
constant, while the VSR correction reads value of the total cross section.

0lewt) = O + O0ysR, (49)
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(3) At last, we can present the exact integration for any values of &, corresponding to a generalization of the Klein-

Nishina cross section,

(£2-25-2)In(25+1)

 md? [2§(§+ 1)(6+8)+4
om &£+ 1)

me

§3

2&4 (1+42&)3

As a last remark, it is important to observe that the
obtained VSR departures from the QED results come from
nonlocal contributions present in the propagators and
vertex function; the main interesting aspects of these effects
are the departure of the usual expression and the novel
energy dependence seen in Egs. (50) and (51).

IV. FINAL REMARKS

In this paper, we presented a study on the Bhabha and
Compton scattering processes of the quantum electrody-
namics in the VSR Lorentz violating framework. Our main
interest in the paper was to establish the leading behavior
of the VSR effects into the differential cross section to the
given processes. For that purpose, we first revised the main
aspects regarding the VSR quantum electrodynamics, by
establishing the respective Feynman rules, free field sol-
utions, energy projection operators, and the completeness
relations for the fermion and gauge fields. It is worth to
emphasize that the VSR modified gauge invariance is
important not only to the presence of new couplings, but
it also allows the photon to propagate massive modes in a
gauge invariant framework without changing its number of
physical d.o.f. [13,14], i.e., the VSR massive photon has
two polarization states, not presenting a third and longi-
tudinal state as in the Proca’s massive electrodynamics.

We started by investigating the VSR effects into the cross
section of the Bhabha scattering. The definition for the
differential cross section in the VSR framework holds as
usual, so our main work was to evaluate the corresponding
Feynman amplitude for the two contributions. In order to
evaluate the cross-section, we expressed the kinematic
variables in the CM frame, where the calculation and
physical significance become clearer. After proceeding
with a detailed computation, it is worth to remark that
the VSR effects have the same energy profile 1/E? of the
QED, and depends mainly on the scattering angle 6,
showing therefore that the VSR modification is minimal
into the cross section. In conclusion, we presented a
discussion on the leading VSR modifications in the

K_2 (4 + 248 + 4282 + 683 — 46E* — 168 + 160 B (284 =28 - 382 +2)In (1 + 25))] (52)
z .

differential cross section in the case of the small- and
large-angle Bhabha processes.

In the discussion of the Compton process in the VSR
framework, caution is needed in the computation of the
cross section, mainly because VSR modifies the process
kinematics. Hence, in order to have a differential cross
section consistent with the VSR effects, we started from the
very definition in terms of the final state variables (37),
and after some manipulations with the consideration of
the VSR energy-momentum conservation, we found a VSR
modified cross section (40) (defined in the laboratory
frame). After some laborious algebraic evaluation of the
Feynman amplitude of the Compton scattering for the case
of unpolarized photons, we managed to obtain the VSR
Compton differential cross section and proceeded to the
discussion of some particular cases in order to highlight the
behavior of the leading VSR effects: (i) we first considered
the limit of low-energy photons, & = w,/m, < 1, where
we could establish the VSR correction to the classical
Thomson cross section; (ii) in the case of high-energetic
photons, £ > 1, we found a constant VSR correction to the
logarithm energy dependence.

We believe that with this study we have completed a
series of previous works related with the VSR modifica-
tions of the most important aspects of QED: scattering by
an external field and bremsstrahlung [12], one-loop cor-
rections of QED [11], and the electroweak theory [7,8].
Certainly further studies involving phenomenological inter-
esting scenarios, for instance, neutrino physics, are neces-
sary in order to elucidate the physical aspects of VSR field
theories.
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