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Overview

1. Motivation and previous electron rejection simulation studies

2. Neural network multivariate study of electron rejection

3. Boosted decision tree multivariate study of electron rejection

4. Deep learning electron rejection study with convolutional neural network

5. Overview of ongoing work with BEAST TPCs
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Electron background rejection
From CYGNUS paper: “Electron backgrounds (i.e. 
gamma-recoils) are a key issue for Cygnus in that they 
will effectively determine the energy threshold.”

❖ Lowering the energy threshold of a WIMP detector by 
improving electron rejection performance increases 
WIMP detection sensitivity

❖ TPCs with high readout segmentation allow for recoil 
images with many features that can be used for 
background discrimination -> ideal for deep learning
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arXiv:2008.12587
Solid lines     =   8.0 keVr threshold
Dashed lines = 0.25 keVr threshold

We aim to improve electron rejection using machine learning. 

https://arxiv.org/abs/2008.12587


Simulated samples
Sample of recoils following the same simulation procedure published in 
Ghrear et. al. (2021). Some highlights:

➢ >12 million events
➢ Optimized 80:10:10 mixture He:CF4:CHF3 at 60 torr and 25°C
➢ 40.6 V/cm drift field -> (100μm)3 segmentation
➢ 25 cm of drift with longitudinal and transverse diffusion of      

425μm/√cm and ~400μm/√cm, respectively
➢ No gain amplification and every electron is recorded
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E [keVee] # e 
recoils

# F 
recoils

0.5-1.5 2.05e6 26,450

1.5-2.5 2.02e6 27,859

2.5-3.5 1.50e6 25,139

3.5-4.5 1.00e6 23,059

4.5-5.5 1.00e6 21,772

5.5-6.5 1.00e6 21,590

6.5-7.5 1.00e6 20,901

7.5-8.5 1.00e6 20,212

8.5-9.5 1.00e6 19,414

9.5-10.5 1.00e6 18,880

7 keVee  F-recoil7 keVee  e-recoil

The recoils events above would be misclassified using length alone, so we would benefit from other 
variables to reliably classify such events.

Only classifying e and 

F recoils today!

https://arxiv.org/pdf/2012.13649.pdf


Electron rejection discriminants (Ghrear et. al. (2021))
❖ 7 unique discriminants used for distinguishing F recoils versus e recoils

a. Length (along principal axis (PA))
b. Standard deviation of charge distribution (SDCD) –
c. Number of clusters (NumClust)
d. Clustering threshold (ClustThres) - minimum number of pixels in most populated cluster

■ Both (c) and (d) use DBSCAN and have free parameters that are optimized for maximizing 
electron rejection 

e. Maximum charge density (MaxDen) in binned charge distribution with bin sizes optimized for e 
rejection

f. Cylindrical thickness (CylThick) - Sum of each charges squared transverse distance from PA
g. Charge uniformity (ChargeUnif) - Standard deviation of the mean distance between each point 

and all other points
❖ ClustThres and MaxDen are each optimized separately for directional and non 

directional cases → 9 total observables
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We will feed events with computed values of each of these 9 observables into (1) an artificial neural 
network, and (2) a boosted decision tree and use these as multivariate classifiers of recoil species 

https://arxiv.org/pdf/2012.13649.pdf


Performance of individual observables (Majd Ghrear)

6

Electron rejection factor, R, is the ratio of total 
electrons in a given bin to the number of remaining 
electrons after selections:

Nuclear recoil efficiency, 𝛜, is the fraction of nuclear 
recoils remaining after selections:

Best individual observables reject 

all electrons above 8 keVee

All but two observables outperform length (LAPA), some by up to two orders of magnitude! The solid 
black combined observable line will be the baseline performance mark for our multivariate studies 

F recoils



Combining observables with neural network (NN)
1. Compute each of the 9 observables for every 

event
2. Store each event as a (10 x 1) vector containing 

the 9 observable values and the energy bin of 
the event

3. Shuffle the data and split into three samples
a. Training sample: 3,046,286 events
b. Validation sample: 507,714 events
c. Test sample:        9,240,402 events

4. Training loop over entire training set in 
random order

5. After each training loop, evaluate the network on 
every event in the validation sample
a. If loss is less than previous training epoch, 

save weight vectors
6. Repeat steps 4 and 5 until model is 

adequately trained
7. Deploy network on test sample
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10 inputs

Fully connected layer with 
64 nodes (16 shown here)

(3) Output classification 
probability for each item 
in batch

Image generated using: http://alexlenail.me/NN-SVG/index.html 

Feed a batch of 512 randomly 
selected event vectors from the 
training sample into the network 

Training loop
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http://alexlenail.me/NN-SVG/index.html


Determining R from NN 
classifier output
1. Find NN output probability, p𝜖 

(black dashed line) corresponding 
to desired recoil efficiency

2. Keep all events where 
p(F recoil | x) > p𝜖 and compute

for this sample of events
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NN rejection factors
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NN classifier outperforms track length (LAPA) and improves electron rejection performance of 
the 9 physically motivated observables

❖ NN achieved best 
performance after 46 training 
loops (epochs)
➢ Trained through 100 

loops

❖ Further adjustments to 
network architecture and 
hyperparameters may lead to 
improved performance but:
➢ High computational cost
➢ NN already outperforms 

other methods so far
➢ At the point of 

diminishing returns?

Rejection factor

We set R = 106 when all 
electrons are rejected in 
an energy bin!



Combining observables with a boosted decision tree (BDT)
❖ Use identical samples to those used 

in the NN combination

Training sample: 3,046,286 events
Validation sample: 507,714 events
Test sample:        9,240,402 events

❖ Feed XGBoost algorithm the same 
(10 x 1) input vectors as the neural 
network

❖ Some advantages to XGBoost:
➢ Can be trained on all 3e6 

events in < 5 mins
➢ Lots of room to optimize 

parameters
➢ Relative performance of input 

parameters can be tracked
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https://xgboost.readthedocs.io/en/stable/


BDT rejection factors
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BDT classifier performs comparably but slightly worse than NN classifier

Rejection factor



Deep learning using a convolutional neural network (CNN)
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❖ Convolutional neural networks (CNNs) are tailor made for 
feature detection in images and can be used for 3D segmented 
events that would be obtained in a pixel readout detector

❖ Charge distributions must be binned into voxels
➢ Simulated detector can read charge over a 253cm3 volume and is “binned” 

into 100μm3 segments => 2500 x 2500 x 2500 voxel grid which is not 
feasible

■ Each event stored this way would have 15.6GB of mostly 0’s
❖ We instead “fiducialize” within [-1.45, +1.45] cm in (x, y, z), as all 

charge in every 7 keVee F recoil satisfies this 

A.S. Lundervold, A. Lundervold/ Z Med Phys 29 (2019) 102–127

❖ We then bin this region into a 32 x 32 x 32 voxel 
grid => ~850𝜇m voxel widths
➢ ~32kB/event = ~330GB for 1e7 events

Original event Voxel representation

Goal: Instead of using pre-defined observables, 
directly feed an artificial neural network images of 
recoils and let it learn which features characterize 
e-recoils vs F-recoils

https://www.researchgate.net/publication/329617174_An_overview_of_deep_learning_in_medical_imaging_focusing_on_MRI


Network architecture
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Convolutional neural network

Input is a random batch of 256 full 3D voxel images 
segmented into (32 x 32 x 32) bins filled with 8-bit unsigned 
integers representing the charge per voxel. Input tensor 
dimensions are (batch_size x input_channels x H x W x D) = 
(256 x 1 x 32 x 32 x 32)

Output
F-recoil classification 
probability for each event 
in batch

Note: We train each energy bin 
separately with the convolutional 
neural network classifier



Results
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Deep learning outperforms all combinations of predefined observables at 50% 
F-recoil efficiency

Rejection factor



Results summary
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Future studies with BEAST TPCs
❖ BEAST TPCs use double GEM amplification with a pixel 

ASIC readout with an 80 x 336 grid of pixels
➢ Each pixel is 250𝜇m x 50𝜇m with 2cm x 1.68cm fiducial area

❖ 70:30 mixture of He:CO2 gas at 1 atm
❖ Drift speed ~ 250𝜇m / chip clock cycle

➢ 100 cycles read out in event -> max 2.5cm relative z length
❖ Operating at gain of ~13,500 calibrated with an Fe-55 source

➢ Set gain as the highest gain where there is effectively no saturation 
in Fe-55 X-ray events

➢ Energy resolution limited by dynamic range for many recoil events
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Cf-252 source

Saturation time 
over threshold

Studies ongoing with BEAST TPCs 
operating at near single electron efficiency. 
Measurements began Dec 2021

Internal Fe-55 
source with movable 
shutter



Challenges in using deep learning on BEAST data/MC
❖ Finite dynamic range -> limited energy resolution for 

recoils
➢ Could be an advantage if we’re only distinguishing between 

Fe-55 electrons and neutrons from Cf-252
❖ If we segment images to feed into a CNN using the 

(80 x 336 x 100) segmentation of our readout, each 
event image will take up 2.7 MB
➢ 1e6 events will fill up a large hard drive
➢ GPU memory will quickly fill up when training as well
➢ This segmentation may be doable on an HPC but we may have 

to consider using coarser voxel bins
❖ For measurement: obtaining a pure labeled sample of 

measured nuclear recoils will take some work
➢ May have to train on simulation and deploy on data

❖ For simulation: Digitizing recoil events is 
computationally expensive 17



Outlook and summary

❖ Multivariate combinations of observables using machine learning leads to 
factors of 2-5 increases in rejection factors over previously published results 

❖ Deep learning seems to be a very fruitful approach for improving electron 
rejection
➢ Up to a factor of 7 increase in R (in 3 keVee) bin over ML combinations of observables

❖ Began collecting data for e-rejection study on measured data
➢ >1e6 Fe-55 events collected to train on
➢ Still processing neutron data and simulation -> results to come soon!
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Backup
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Data processing for neural network
● Electron and F recoils are binned into distinct integer 

energy bins and combined into one file per bin
○ [(0.5,1.5), (1.5,2.5), (2.5,3.5), … , (9.5,10.5)] keV

● Origin is defined at centroid of charge distribution for 
each event

● Charge is binned into a 34 x 34 x 34 voxel grid 
ranging from (-1.45cm,+1.45cm) -> 850𝜇m3 voxels

● Charge outside of voxel grid is assigned to the 
nearest edge voxel

● Crop out outermost shell of voxel grid when feeding 
into neural network -> removes any information 
about charge outside of voxel volume (realistic), 
leaving a 32 x 32 x 32 grid of voxels

○ No F recoils are cropped (largest extent in any 
direction is 2cm)

○ Electron recoils are cropped (~15cm largest extent, 
usually due to multiple charge clusters)

1.4 keVee e recoil before 
cropping 

Same e recoil after 
cropping -> 0.84 keVee
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BDT feature map

● Importance measure is “coverage”
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