

Molecular sieve-based gas recycling system with radon reduction for rare-event gaseous detectors

Robert Renz Marcelo Gregorio University of Sheffield robert.gregorio@sheffield.ac.uk @askradonrob

Introduction

- In ultra-sensitive gas-based experiments, it is crucial to use pure target gases
- Contaminants such as radon can produce unwanted backgrounds
- Other contaminants like water, nitrogen and oxygen can suppress signals

Introduction

Molecular Sieves Low Background MS Other Gases Gas System Design Performance Testing Conclusions

Keep flowing fresh target gas

B. R. Battat et al., Radon in the DRIFT-II directional dark matter TPC: emanation, detection and mitigation, JINST 9 (2014) P11004.
 R. Guida et al., Effects of gas mixture quality on GEM detectors operation, J. Phys.: Conf. Ser. 1498 (2020) 012036

Introduction

- SF₆ gas become of interest in directional dark matter searches
- Future large scale plans CYGNUS-1000 utilising 1000 m³ of SF₆
- Continuously using fresh SF₆ gas is problematic due to strict regulations with the use F-gases

Introduction Molecular Sieves Low Background MS Other Gases Gas System Design Performance Testing Conclusions

S. E. Vahsen, C. A. J. O'Hare, W. A. Lynch, et al., Cygnus: Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos, 2020.

Molecular Sieves (MS)

Introduction **Molecular Sieves** Low Background MS Other Gases Gas System Design Performance Testing

Conclusions

- Molecular sieves are structures with specific pore sizes (four different types: 3A, 4A, 5A and 13X)
- Pores allow molecules with the critical diameter equal or below to be adsorbed on to the structure
- Molecules with diameters larger than the critical diameters pass between the bead gaps

Sigma-Adrich, Molecular Sieves-Technical Information Bulletin, AL-143 Mineral Adsorbents, Filter Agents and Drying Agents (2020).

Molecular Sieves (MS)

Demonstration of radon removal from SF₆

Introduction Molecular Sieves Low Background MS Other Gases Gas System Design Performance Testing Conclusions

Radon removed by 5A type MS from SF₆ at room temperature **(97±1 Bq/Kg)**

R. R. Marcelo Gregorio et al., Demonstration of radon removal from SF6 using molecular sieves, JINST 12 (2017) P09025.

Low Background MS

EMANATION

CHAMBER

Commercial MS intrinsically emanate radon at levels unsuitable for ultra-sensitive rare-event physics experiments

MESHED

O-RINGS

RAD7

MOLECULAR SIEVE

CONTAINER

DURRIDGE RAD7 RADON DETECTORS RESSUR

Commercial 5A type MS: **525±37 mBq/kg**

Goal is to **maximise amount of MS allowed** by radioactive budget of an experiment ~ 1 mBq

R.R. Marcelo Gregorio et al., Test of low radioactive molecular sieves for radon filtration in SF6 gas-based rare-event physics experiments, 2021 JINST 16 P06024

EDWARDS VACUUM

LOW HUMIDITY AND LOW ACTIVITY NITROGEN GAS

00

CYGNUS online meeting | 10-11 Jan 2021

Introduction Molecular Sieves **Low Background MS** Other Gases Gas System Design Performance Testing Conclusions

Low Background MS

Nihon University in collaboration with Union Showa K.K., has developed a method of producing low radioactive MS Introduction Molecular Sieves **Low Background MS** Other Gases Gas System Design Performance Testing Conclusions

Commercial Sigma-Aldrich

Nihon Uni MS V1

Nihon Uni MS V2

To provide a complete comparison of the MS candidates, the results from the **emanation** and **filtration** tests were combined

H. Ogawa et al., Development of low radioactive molecular sieves for ultra-low background particle physics experiment, JINST 15 (2020) P01039.

Low Background MS

Introduction Molecular Sieves **Low Background MS** Other Gases Gas System Design Performance Testing Conclusions

MS	Geometry	Rn emanated mBg/kg	Rn Captured Bg/kg
Sigma Aldrich (Commercial)	8-12 mm uniform	525±37	97±1
Nibon Uni ()(1)	1-2 cm Granules	99±23	35±2
	Fine Powder	680±30	330±3
Nihon-Uni (V2)	Powder	<32	254±3

The NU-developed (V2) 5Å MS emanated radon **at least 98% less** per radon captured, compared to the commercial MS

R.R. Marcelo Gregorio et al., Test of low radioactive molecular sieves for radon filtration in SF6 gas-based rare-event physics experiments, 2021 JINST 16 P06024

Overview so far

Introduction Molecular Sieves Low Background MS Other Gases Gas System Design Performance Testing Conclusions

- ✓ Removes radon <u>5A Type MS</u>
- ✓ Low intrinsic radioactivity MS NU V2 MS
- ✓ Remove common impurities <u>3A, 4A Type MS</u>
- ✓ Does not absorb target gas SF₆ <u>3A, 4A, 5A Type MS</u>

Ideal for pure SF₆ experiment!

Application to other gases

Does the MS absorb the desired target gas?

Introduction Molecular Sieves Low Background MS **Other Gases** Gas System Design Performance Testing Conclusions

3A/4A- removes N_2 ,O_2 and H_2O 5A- removes radon

Application to other gases: He

Helium absorption test

Introduction Molecular Sieves Low Background MS **Other Gases** Gas System Design Performance Testing Conclusions

3A/4A- removes N₂,O₂ and H₂O
5A - removes radon
13X in CF₄- absorption control

- ✓ 3Å, 4Å and 5Å type does not absorb helium
- Purification with radon removal suitable for helium in pure form and mixtures

Application to other gases: CF₄

CF₄ Absorption test

Introduction Molecular Sieves Low Background MS **Other Gases** Gas System Design Performance Testing Conclusions

MS	Pressure change after 20m (torr)	Absorption per mass of MS (torr/kg)	Notes
3A	-	-	
4A	1±3	-3±6	
5A	-39±3	87±7	
13X	-26±3	67±8	Control
Activated Charcoal	-54±3	197±11	

3A/4A- removes N₂,O₂ and H₂O
5A - removes radon
13X - absorption control

JÅ and 4Å type does not absorb CF4
 JÅ type absorbs CF4 at 87±7 torr/kg

Application to other gases: CF4

Radon removal from CF₄

Introduction Molecular Sieves Low Background MS **Other Gases** Gas System Design Performance Testing Conclusions

100±1 Bq/Kg Pressure drop: ~12 torr

SÅ type absorbs CF₄ but still removes radon (c.f. SF₆ 97±1 Bq/Kg)
 Purification suitable for pure CF₄ but mixtures are problematic

MS filter ready to use 'as is'

Issues with conserving target gas mixing ratio

Gas System Design

Dual MS design utilises Vacuum Swing Adsorption (VSA) Technique

Introduction Molecular Sieves Low Background MS Other Gases **Gas System Design** Performance Testing Conclusions

Notice small amount of our desired gas is lost during vacuum regeneration

Gas System Design

Unlike conventional VSA system we have a **gas recovery loop** allowing recovery of at least 99.99% of total gas used

Introduction Molecular Sieves Low Background MS Other Gases **Gas System Design** Performance Testing Conclusions

Current Status

Introduction Molecular Sieves Low Background MS Other Gases Gas System Design Performance Testing Onclusions

Photo of status December 2021

Performance Testing

Introduction Molecular Sieves Low Background MS Other Gases Gas System Design **Performance Testing** Conclusions

Performance Testing

Compare detector operation with and w.o. gas system by measuring:

Introduction Molecular Sieves Low Background MS Other Gases Gas System Design **Performance Testing** Conclusions

1. Gas gain detector signal

Example of signal deterioration due to gas contamination in a ThGEM TPC CF4 (Fe-55 calibration source)

2. Experiment's Intrinsic radon background

Conclusions

Introduction Molecular Sieves Low Background MS Gas System Design Vacuum Swing Adsorption Planned Testing **Conclusions**

- Devised an alternative method that recycles gas significantly reducing the total gas used in ultra-sensitive gas-based experiments
- Identified a suitable low background MS candidate
- Presented suitable MS Filters for SF₆, CF₄ and He target gases in pure form and mixtures
- Working towards MS gas system demonstration with pure SF_6, CF_4 and SF_6:He

VSA Operation

TIME

VSA: Gas Filtration

VSA: Gas Recovery Loop

Back up slides

VSA: Vacuum Generation

Back up slides

VSA: Gas Replacement

Back up slides

