<u>Muon Detector for Students</u> (MUDS)

Andrew Kuhlman

Dec 3, 2020

1

Goals of MUDS

- Detect Muons (measure the particle rate) at Sea Level
- Circuit should be affordable and simple so that a class of high school students could potentially replicate the detector – class project?

Standard Model of Elementary Particles

Muons?

https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standard_Model_of_Elementary_Particles.svg/1280px-Standard_Model_of_Elementary_Particles.svg.png

What are Cosmic Rays?

- Cosmic Rays are high energy particles
 - "High Energy" = traveling near the speed of light (i.e. $\frac{v^2}{c^2}$ is not negligible)
- Cosmic Rays originate from the sun, other stars, supernovae, and other parts of the universe

https://www.thesun.co.uk/wp-content/uploads/2019/03/NINTCHDBPICT000000417642.jpg

 $https://upload.wikimedia.org/wikipedia/commons/9/98/Andromeda_Galaxy_\%28 with_h-alpha\%29.jpg$

What Types of Particles are Cosmic Rays?

- 89% Protons (Hydrogen)
- **9% Alpha Particles** ullet(Helium)
- 1% Electrons ullet
- 1% Nuclei of Other \bullet Elements

What Are the Effects of Cosmic Rays at Sea Level?

- When Cosmic Rays reach Earth, they interact with molecules in the atmosphere and create showers of new particles
- The particles created in these showers have short lifetimes and decay rapidly into other particles
- The particles which survive long enough to reach the ground are primarily Muons, Neutrinos and Gamma Rays
- At sea level every square meter receives about 100 muons per second

How to Detect Particles? A Simplified Detector

Requirements

Part	Considerations
Scintillator (BC-408 ?)	 Need to reduce background light so that scintillation from muon energy deposition is primary source of light
SiPM (Sensl C-Series: MicroFC-SMTPA-10035)	 Pulse Width 0.6 ns (Fast Output) Needs Biasing circuit Needs Transimpedance Amp to convert from Q → V (really I → V) Additional Amp Stage?
ADC (MCP3008)	 75-200 kilosamples/sec (V_{DD}=V_{REF}=2.7V & 5V) → best possible acquisition time = 5 µs Needs Sample and Hold

SiPM wrapped with scintillator by foil and black tape

How Large Should the Signal Be?

- τ =82 ns \rightarrow T_{90%-10%}=2.2*82ns = 180.4 ns
- $G \approx 2.7 \times 10^6$ for ~2.5V of overvoltage
- For a single photoelectron 2.7*10⁶* $q_e/180.4$ ns = 2.4 μ A
- With 50 Ω resistor, V=IR=2.5*50 = 120 μ V per photoelectron
- With 1k Ω resistor, V=120 μ V*20 = 2.4 mV per photoelectron
- Noise
 - dark current \rightarrow expect about 15 nA (typical) to a max of 49 nA of current \rightarrow 49 μ V with 1k resistor

Questions?

Thank You For Listening!