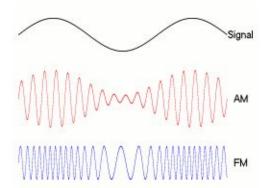
47.5 the FM Wave

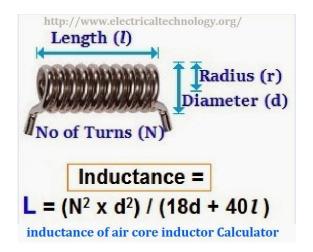
By Jenna Lidua


Background

- 1830's: Radio started from wireless communication from inductive/capacitive inductance and transmission
- 1864: James Clerk Maxwell discovered electromagnetic waves (i.e. light, radio, x-rays) propagated at constant speed in free space
- 1888: Heinrich Rudolf Hertz used Maxwell's theory of electromagnetism and proved the airborne transmitted waves ("Hertzian Waves") through a frequency later became the radio spectrum
- 1906: On Christmas Eve, Reginald Fessenden produced first AM broadcast to sailors at sea ("Oh Holy Night"; Bible verse)
- 1933: Edwin H. Armstrong patented FM radio

Project Overview: FM Radio

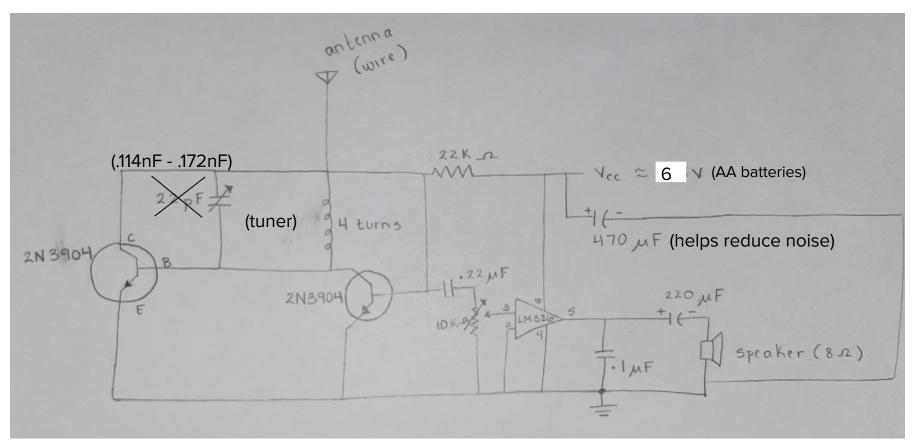
- Need a tuner, antenna, transistors (2N3904), resistors, capacitors, Op-Amp (LM386)
- FM vs AM
 - FM has a crisper/cleaner sound, less noise
 - FM : Frequency Modulation (sound better) (88MHz 108MHz) (Bandwidth: 200kHz per channel)
 - AM: Amplitude Modulation (heard further away) (550kHz 1720kHz) (Bandwidth: 10kHz)
 - \circ + 10kHz when switching between frequency range generally



Requirements

- Target frequency: 88 108 MHz
- Power output from 8 ohm speaker needed: (150mW x 2) ≅300mW
 - Power output from op-amp: 250-325mW
- Variable Capacitor Range: 0.093 nF 0.253nF

$$L = \frac{d^2n^2}{18d + 40l} = 0.0138 \,\mu H \quad ; \quad d = 0.098 \,in, \, n = 4 \,turns, \, l = 0.236 \,in$$


$$f = \frac{1}{2\pi\sqrt{LC}} = 88MHz, \ 108MHz$$

$$C = \frac{\left(\frac{1}{2\pi(88 \cdot 10^6)}\right)^2}{L} = 0.172 \, nF$$

$$C = \frac{\left(\frac{1}{2\pi(108 \cdot 10^6)}\right)^2}{L} = 0.114 \, nF$$

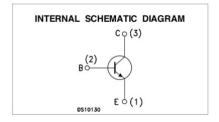
Schematics

Part Details: Transistor (2N3904)

2N3904

PRELIMINARY DATA

SMALL SIGNAL NPN TRANSISTOR

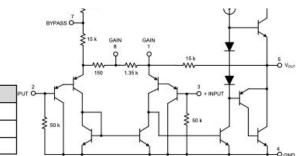

Ordering Code	Marking	Package / Shipment	
2N3904	2N3904	TO-92 / Bulk	
2N3904-AP	2N3904	TO-92 / Ammopack	

- SILICON EPITAXIAL PLANAR NPN TRANSISTOR
- TO-92 PACKAGE SUITABLE FOR THROUGH-HOLE PCB ASSEMBLY
- THE PNP COMPLEMENTARY TYPE IS 2N3906

APPLICATIONS

- WELL SUITABLE FOR TV AND HOME APPLIANCE EQUIPMENT
- SMALL LOAD SWITCH TRANSISTOR WITH HIGH GAIN AND LOW SATURATION VOLTAGE

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	60	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	40	V
V _{EBO}	Emitter-Base Voltage (Ic = 0)	6	V
Ic	Collector Current	200	mA
Ptot	Total Dissipation at T _C = 25 °C	625	mW
Tstg	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

Part Details: Op-Amp (LM386)

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
	Supply Voltage	4	12	٧
VCC	LM386N-4	5	18	V
]	Speaker Impedance	4	33	Ω

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

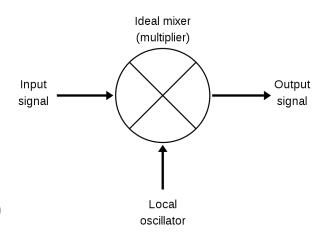
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vs	Operating Supply Voltage	LM386N-1, -3, LM386M-1, LM386MM-1	4		12	ij.
		LM386N-4	5		18	V
l _Q	Quiescent Current	V _S = 6 V, V _{IN} = 0		4	8	mA
Роит	Output Power	$V_S = 6 \text{ V}, R_L = 8 \Omega, THD = 10\%$ (LM386N-1, LM386M-1, LM386MM-1)	250	325		mW
		V _S = 9 V, R _L = 8 Ω, THD = 10% (LM386N-3)	500	700		
		$V_S = 16 \text{ V}, R_L = 32 \Omega, THD = 10\%$ (LM386N-4)	700	100		
Av	Voltage Gain	V _S = 6 V, f = 1 kHz		26		
		10 µF from Pin 1 to 8		46		dB
BW	Bandwidth	V _S = 6 V, Pins 1 and 8 Open		300		kHz
THD	Total Harmonic Distortion	V _S = 6 V, R _L = 8 Ω, POUT = 125 mW f = 1 kHz, Pins 1 and 8 Open		0.2%		
PSRR	Power Supply Rejection Ratio	V _S = 6 V, f = 1 kHz, CBYPASS = 10 μF Pins 1 and 8 Open, Referred to Output		50		dB
R _{IN}	Input Resistance			50	1.	kΩ
I _{BIAS}	Input Bias Current	V _S = 6 V, Pins 2 and 3 Open		250		nA

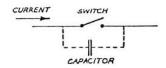
2 Applications

- AM-FM Radio Amplifiers
- Portable Tape Player Amplifiers

3 Description

The LM386M-1 and LM386MX-1 are power amplifiers designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value from 20 to 200.


The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 mW when operating from a 6-V supply, making the LM386M-1 and LM386MX-1 ideal for battery operation.


Demo Video

Learned?

- How a tuner works: capacitor, inductor, frequency
- Difference between AM and FM
- Trial and Error with electronics
- Noise Causes/Reduction:
 - Electronics w/in 20 feet causes disruption (white noise/static)
 - VHF radio reception limited to 30-40 miles
 - Adding more precise antenna
 - Frequency mixer: creates new frequencies from two signals
 - Adding capacitor from Vcc to speaker/ground

NO CAPACITOR

— CURRENT FALLS RAPIDLY

TO ZERO WHEN SWITCH IS

OPENED CREATING SERIOUS

CAPACITOR ACROSS CUNTACTS

- CURRENT FALLS SLOWLY TO

ZERO WHEN SWITCH IS

OPENED RESULTING IN

LESS INTERFERENCE.

References

- https://en.wikipedia.org/wiki/History_of_radio#Summary
- https://fas.org/man/dod-101/navy/docs/es310/FM.htm#perf
- https://flypaper.soundfly.com/discover/what-actually-is-the-difference-between
 -am-and-fm-radio/
- Datasheets:
 - https://www.sparkfun.com/datasheets/Components/2N3904.pdf
 - https://www.ti.com/lit/ds/symlink/lm386.pdf?ts=1606969103449&ref_url=https%253A%252F%25
 2Fwww.google.com%252F
 - https://www.sony.com/electronics/support/res/manuals/2899/28993612M.pdf

