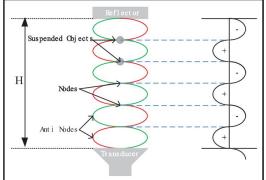
Acoustic Levitation Device

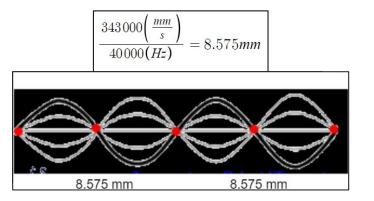
TJ Tigley - PHYS 475 Project Design Review


Overview

- Introduction
- Project Overview
- Requirements
- Design Considerations
- Schematic Analysis
- Open Questions
- Schedule

Introduction

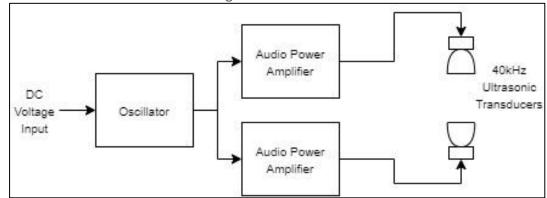
- Method for suspending matter using acoustic radiation pressure
- Sound Pressure: ~150dB
 - (In reference to 20uPa of sound pressure)
- Utilizes ultrasonic standing waves (USW)
 - Nodes = minimum pressure
 - Antinodes = maximum pressure
- Two methods for USW
 - Opposing transducers
 - Transducer and reflector


Project Overview

Two Primary Goals

- 1. Create an acoustic levitation device using analog components
 - a. Success in digital approach
 - b. Reducing cost with analog approach
- 2. Reduce the size of the overall design
 - a. Arduino: up to 3 separate modules
 - b. Minimize to one board
 - c. Handheld device

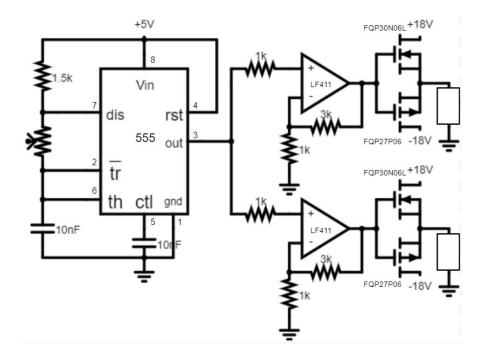
Requirements


- 1. Ultrasonic frequency input to transducers
 - a. 40kHz frequency
- 2. High current/voltage driving circuit
 - a. </= 20V driving voltage
 - b. </= 2A driving current
- 3. Consistent apparatus for adjacent transducers
 - a. ~34.3mm separation
- 4. Reduced and Portable setup
 - a. Untethered from static power source
 - b. Single board circuit

Design Considerations

<u>3 segment setup</u>

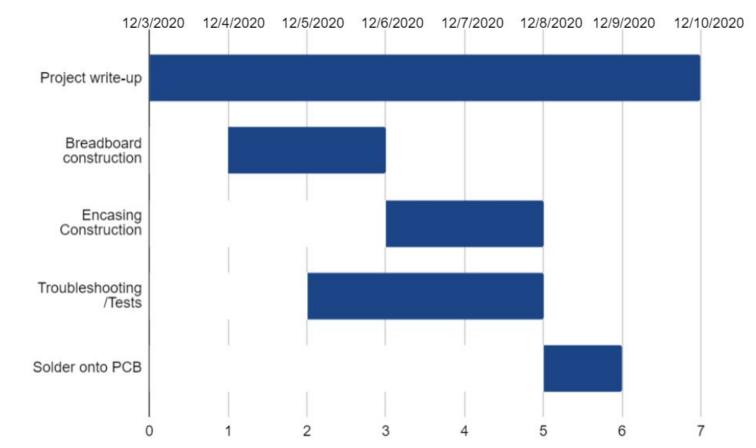
- 1. Oscillator
 - a. 40kHz driving frequency
- 2. Amplifier
 - a. Individual amplifier inputs
 - b. Maximum transducer operation
- 3. Ultrasonic Transducers
 - a. Nominal 40kHz range
 - b. Adjacent transducers vs reflector configuration



Schematic Analysis

Component	Parameter	MIN	TYP	MAX	Desired	UNIT
LM555 Timer (Astable)	Supply Voltage	4.5	5	16	5	v
LF411	Supply Voltage	3.5		18	18	V
	Slew Rate	8	13		4.52	V/us
	Output Current		0.025		~ 1	A
FQP30N06L FQP27P06	Drain-Source Breakdown Voltage			60 -60		v
TR40-16 (Transducer)	Maximum Input Voltage			20	18	v
	Center Frequency			40.0 +/- 1.0	40	kHz
	Sound Pressure Level (@40kHz)	120			120+	dB
	Bandwidth (@120dB, 40kHz)	5				kHz

Oscillator Frequency


$$f = \frac{1.44}{(R_2 + 2R_1)C_1} = \frac{1.44}{((1.5k\Omega) + 2(1k\Omega))(10nF)} = 41.143kHz$$

Slew Rate
 $2\pi(40kHz)(18V) = 4.52 \frac{V}{us}$

Open Questions

- 1. Overall form factor of the device
 - a. Solder onto one PCB
 - b. Project enclosure for board, batteries and transducers
- 2. Sound Pressure Analysis
 - a. Qualitative method of analysis?
 - b. Minimum: validation of circuit's electrical properties
 - c. Comparison to digital approach

Project Schedule

Tasks

Summary

- Introduction
- Project Overview
- Requirements
- Design Considerations
- Schematic Analysis
- Open Questions
- Schedule

Sources

- [1] https://science.howstuffworks.com/acoustic-levitation.htm#:~:text=Acoustic%20levitation%20uses%20sound%20traveling.don't%20move%20or%20drift.
- [2] https://www.ti.com/lit/ds/symlink/Im555.pdf
- [3] https://www.ti.com/lit/ds/slos011c/slos011c.pdf?ts=1606235008590
- [4] http://cdn.sparkfun.com/datasheets/Components/General/FQP30N06L.pdf
- [5] https://www.sparkfun.com/datasheets/Components/General/FQP27P06.pdf
- [6] https://www.estudioelectronica.com/wp-content/uploads/2018/09/SHT-USW-1.pdf

Questions?