

Exploring the Richness of Flavor Physics

Selina Li

Physics Colloquium at University of Hawaii October 15, 2009

Outline

- Motivation: Flavor Physics
- Introduction to PEP-II and BaBar
- Why and How to Trigger for Physics
- Selected Physics Topics
 - Leptonic decays of $\rm D_{s}$ and hints of new physics
 - Two-photon physics
- Conclusions and Prospects

Some Big Questions in Particle Physics

Cabibbo-Kobayashi-Maskawa (CKM) matrix 🥎

- Why do we have exactly three generations of quarks and leptons in the Standard Model (SM)?
- Why is the flavor structure in the weak interaction so complicated?
- What is the source of CP violation that produced the Baryon asymmetry?
- Where is the theorized Higgs boson that responsible for the generation of mass?
- Is there physics beyond the SM?

Colliders Comparison

	Accelerator (Detector)	Time between collisions (ns)	Peak Iuminosity (10 ³⁴ cm ⁻¹ s ⁻¹)	Energy (GeV)
(BEPCII (BES-III)	8	0.03	1(2.3) x 1(2.3)
	CESR (CLEO)	4.2	0.2	5.29 x 5.29
e^+e^-	KEKB (Belle)	2.1	2.1	8 × 3.5
\langle	PEP-II (BaBar)	4.2	1.2	9 × 3.1
	LEP (Aleph, Delphi, Opal, L3)	2200	0.005	105 ×105
	SLC (SLD)	8000000	0.0003	46 ×46
e p	HERA (H1, Zeus)	96	0.0014	920 × 30
p p ≺	Tevatron (D0, CDF)	396 (132)	0.02	1000 × 1000
рp	LHC (Atlas, CMS)	25	1.0	7000 × 7000

PEP-II at SLAC

- PEP-II collides e⁺ and e⁻ inside the BaBar detector with a center of mass energy of ~10.58 GeV.
- Operation: 1999-2008

PEP-II ring: C=2.2 km

The Physics Programs

The e⁺e⁻ collisions

The intermediate stages of this process occur in about a billionth of a billionth of a second, and are not observable.

www.particleadventure.org

How to Detect Particles?

Selina Li, SLAC

Event Rates on the Y(4S) Energy

Event Type		Cross Section	Event Rate *
Interesting physics!	(b b	1.05 nb	
	c c	1.30 nb	
	s s	0.35 nb	
	uu	1.39 nb	~65 Hz
	d d	0.35 nb	
	$\tau^+ \tau^-$	0.94 nb	
	$\mu^+\mu^-$	1.16 nb	
e ⁺ e ⁻		~50 nb	~ 500 Hz
Beam			> 20 kHz
background			

* at PEP-II luminosity of about 10³⁴cm⁻²s⁻¹

Why and How to Trigger?

- Data processing is limited to a few hundred Hz ⇒ trigger to select interesting events
- BaBar trigger characteristics:
 - Continuous readout & pipelined
 - Trigger lines defined by generic topology

• Goals:

- Eliminate background as early as possible
- Keep interesting physics events

• Challenge:

Maintaining high efficiency for physics while reducing trigger rate with limited time to make decisions

A Snapshot at What a Trigger Does

- Slightly more sophisticated algorithms used to separate background physics processes from the interesting processes.
- A farm (composed of 50 Linux dual-core CPU's)

Execute algorithms: ~10 ms per event

~350 Hz

L3

Explore the Flavor Physics of Quarks

Selected Physics Topics

1) $e^+e^- \rightarrow c\overline{c}$

2) $e^+e^- \rightarrow e^+e^-\gamma\gamma$

Discrete Symmetry Operators: C, P, T

Physics Processes

$e^+e^- \rightarrow c\overline{c}$ Example:

Leptonic Decays of Charged Heavy Mesons

Why Is Leptonic Decay Important?

- It gives access to the decay constant and the CKM matrix element.
- Only one hadronic current is involved \Rightarrow theoretically easier to calculate in QCD.
- It provides calibration for decay processes involving mesons containing b quarks.
- Lattice predictions for f_B/f_{Bs} are a key part in translating B and B_s mixing rates into CKM constraints.
- Leptonic *B* decays provide interesting sensitivity to new physics (tree-level sensitivity to charged Higgs).

Leptonic Decay of Mesons

Measure the decay constants f_D, f_{Ds} to compare with Lattice QCD
Experimentally hard to measure because of CKM suppression, helicity suppression, and neutrino reconstruction.

Physics Colloquium

BAR Analysis Signal: $e^+e^- \rightarrow xD_{(s)}D_s^*$, $D_s^* \rightarrow D_s\gamma$, $D_s \rightarrow \mu\nu$ indecay as tagging 200 200 10^{10} **ZBABAR** Analysis of $D_s \rightarrow \mu \nu$ from BaBar

s

Tag side)

D_(s)

e

University of Hawaii

Physics Colloquium

- \blacktriangleright Look for a μ^+ and "reconstruct" a v from (E_{miss}, p_{miss})
- \blacktriangleright Combine μ and v to make a D_s
- > Combine D_s with a γ to make a D_s^*
- > Compute $\Delta M = M(\mu v \gamma) M(\mu v)$
- Subtract background
 - sidebands of the tag sample
 - electron sample

 \succ Fit ΔM distribution to extract signal events

Use $D_s \rightarrow \phi \pi$ for normalization because of unknown production rate of D_s^(*)

PRL 98, 141801 (2007)

Analysis of $D_s \rightarrow \mu \nu$ from Belle

e⁺**e**⁻→**DKXD**^{*}_s, **D**^{*}_s→**D**_sγ, **D**_s→ $\mu\nu$ where X: n(π) and up to one γ

- D_S is not observed but inferred from calculating the neutrino candidate mass: M_{rec}²(DKXγµ)
- No normalization mode needed
- High signal-to-backgroud ratio

Full reconstruction method

Analysis of $D_s \rightarrow \mu \nu$ from CLEO-c

Selina Li, SLAC

Experimental Results and Predictions

Two-Photon Physics

What Is Two-Photon Physics?

- It is the study of interactions between two photons.
- Electron-positron machines allowed first observation of γγ processes.
- Unique feature: produce hadronic states with C=+ ⇒ have access to some states that might not be produced or detected otherwise
 - Examples: η_c, non-strongly interacting supersymmetric particles, Higgs bosons, etc.
 - Good calibration channels: $\gamma \gamma \rightarrow e^+e^-$, $\mu^+\mu^-$

Early History of Two-Photon Physics

- 1932: Early interest after the discovery of positron
- 1960: Theoretical papers relevant to two-photon physics at e⁺e⁻ storage rings
 - resonance production (by F. Low)
 - meson pair production (by F. Calogero and C. Zemach)
- 1969: First experimental results on two-photon QED reactions from Novosibirsk and Frascati.
- 1969-1970: Theory papers on $\gamma\gamma$ -hadrons
 - Brodsky, Kinoshita, and Terazawa: γγ collisions will become dominant as the energy increases.
- 1979: Experimental activities resumed by Mark II at SPEAR (SLAC)

"Recent" Discoveries from γγ Fusions

Why Is Two-Photon Physics Interesting?

- Study or look for C=+ resonances
- Photon-to-meson transition form factors
 - Window to hadron distribution amplitudes

 $\succ \gamma^* \gamma^* \rightarrow \pi^0$, f₀, η , σ , η_c , η_b , etc.

- Exclusive hadron pair production in twophoton reactions
- Photon structure function

Three Different Kinematic Conditions

- Double-tag: the scattered e⁺ and e⁻ are both detected
 - Ideal for two-photon physics

- Single-tag: only one scattered e⁺ or e⁻ is detected
 - Determination of the Q² dependence of resonance couplings or of the total cross section
- >No-tag: neither the e^+ nor the e^- is detected
 - * Preferentially small total transverse momentum Σp_T of the detected particles \Rightarrow restrict both Q² values to be small

statistics

data

-arger

An Analysis of $\gamma \gamma^* \rightarrow \pi^0$

• $e^+e^- \rightarrow e^+e^-\gamma\gamma^*$, where $\gamma\gamma^* \rightarrow \pi^0$ in the single-tag mode:

Tagged: momentum transfer $Q^2 = -q_1^2 = -(p - p')^2 > 3 \text{ GeV}^2$ \Rightarrow Highly virtual photon

Untagged: momentum transfer $q^2 = -q_2^2 \sim 0 \text{ GeV}^2$ \Rightarrow Quasi-real photon

 The differential cross section for this process depends on only one form factor F(Q²) = ∫ T(x,Q²) φ_π(x, Q²) dx.

Calculable hardscattering amplitude for $\gamma\gamma \rightarrow q \ \overline{q}$ Nonperturbative pion distribution amplitude (DA) for $q \ \overline{q} \rightarrow \pi$

(x = fraction of the π^0 momentum carried by one of the quarks)

• Experimental data on $F(Q^2)$ help determine the unknown dependence on x for $\phi_{\pi}(x, Q^2)$.

The π^0 Transition Form Factor

Selina Li

Analysis of Neutral Pair Production

- At the B factories, two-photon physics can be studied from the process: $e^+e^- \rightarrow e^+e^-\gamma\gamma$.
 - no-tag analysis: e⁺ e⁻ scatter at very small angles and escape undetected

quasi-real photons

$$\pi^0 = \frac{1}{\sqrt{2}} \left(u \overline{u} - d \overline{d} \right)$$

- What: study meson pair production $\gamma \gamma \rightarrow MM$, where M can be π^0 or η
- Why:
 - Neutral pair production allows a determination of the meson wave function
 - Test QCD models: pQCD vs "handbag model" for hadron pair production
- Why now:
 - The virtual photon flux falls off rapidly at increasing center of mass energy W, so it had been difficult to use the two-photon reaction to study highmass final states.
 - But, the high luminosity at the B factories makes this possible.
- Goal: measure the neutral pair production cross sections and angular distributions from BaBar data taken at $\sqrt{s} = M(\Upsilon(4S)) = 10.58$ GeV

An Event Display of $\gamma\gamma \rightarrow \pi^0\pi^0$

• A x-y view

• A *ρ*-z view:

$\frac{2}{2}$ Results of $\gamma \gamma \rightarrow \pi^0 \pi^0$ from Belle

University of Hawaii Physics Colloquium

PRD79, 052009 (2009)

What Have We Learned from yy Physics?

- Resonance production
 - The charmonium χ_{c0} and χ_{c2} states are observed in $\gamma\gamma \rightarrow \pi^0\pi^0$.
 - Search for new/exotic resonance on going

- Angular analyses:
 - Non-perturbative QCD \rightarrow perturbative QCD
 - At high energy, differential cross section ~ $\sin^{-4}\theta^*$ as predicted by pQCD

Prospects for e⁺e⁻ Colliders

- The B-factory and flavor physics experiments (i.e. BaBar, Belle, BES-III) are complementary to the Large Hadron Collider program.
 - High statistics data samples give sensitivity to rare decays ⇒ good place to search for new physics
 - Explore the deviations from SM in flavor physics
- Next phase in flavor physics studies:
 - Belle-II/SuperB are great facilities for precision tests
- Potentials in two-photon physics:
 - Search for new resonances with C=+
 - (Light) Higgs production
 - (Light) supersymmetric particle production
 - More single- and double-tag analyses possible

Conclusions

- The B factories continue to explore the richness of flavor physics and produce significant physics results.
- Improved precision measurements of D_s decay are expected:
 - Large datasets from BaBar and Belle (and even more from Belle-II)
 - Unique datasets to study $\rm D_{s}$ meson from BES-III
 - New physics effects or not?
- Two-photon physics should be explored further
 - To gain full potential for discovery
 - To help understand the fundamental hadron wave function and the photon structure
- A lot of interesting physics is still waiting to be explored.
- Some of the big questions in particle physics can be answered with our current and future experiments.