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OutlineOutline

• Motivation: Flavor Physics
• Introduction to PEP-II and BaBar
• Why and How to Trigger for Physics
• Selected Physics Topics

– Leptonic decays of Ds and hints of new physics
– Two-photon physics 

• Conclusions and Prospects
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Some Big Questions in Particle PhysicsSome Big Questions in Particle Physics
• Why do we have exactly three 

generations of quarks and 
leptons in the Standard Model 
(SM)?

• Why is the flavor structure in the 
weak interaction so complicated?

• What is the source of CP 
violation that produced the 
Baryon asymmetry?

• Where is the theorized Higgs 
boson that responsible for the 
generation of mass?

• Is there physics beyond the SM?
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Colliders ComparisonColliders Comparison

p p
p p
p e

Accelerator 
(Detector)

Time between 
collisions (ns)

Peak 
luminosity 
(1034 cm-1s-1)

Energy (GeV)

BEPCII (BES-III) 8 0.03 1(2.3) x 1(2.3)

CESR (CLEO) 4.2 0.2 5.29 x 5.29

KEKB (Belle) 2.1 2.1 8 

 

3.5

PEP-II (BaBar) 4.2 1.2 9 

 

3.1

LEP (Aleph, Delphi, 
Opal, L3)

2200 0.005 105 105

SLC (SLD) 8000000 0.0003 46 46

HERA (H1, Zeus) 96 0.0014 920 

 

30

Tevatron (D0, CDF) 396 (132) 0.02 1000 

 

1000

LHC (Atlas, CMS) 25 1.0 7000 

 

7000

ee
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PEPPEP--II at SLACII at SLAC
• PEP-II collides e

 

and e

 

inside 
the BaBar detector with a 
center of mass energy of 
~10.58 GeV.

• Operation: 1999-2008

PEP-II ring: C=2.2 km
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The Physics ProgramsThe Physics Programs
  τ, τμμ,ee,b, bc, cs, sd, duuee   

 thresholdBB

f


f

e

e
Where f

 

is a fermion 
(a quark or lepton)
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The The ee++ee-- collisionscollisions

The intermediate stages of this process occur in about a billionth of 
a billionth of a billionth of a second, and are not observable. 

Snap!

www.particleadventure.org
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How to Detect Particles?How to Detect Particles?


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The BaBar DetectorThe BaBar Detector
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BaBar Event DisplayBaBar Event Display

Rdrift chamber = 80.9 cm
(40 measurement points, each with 
100-200 m res. on charged tracks)

EM Calorimeter: 
6580 CsI(Tl) 
crystals

Silicon Vertex Tracker
5 layers: 15-30 m res. 

Cerenkov ring imaging 
detectors: 144 quartz 
bars (measure velocity)

Tracking volume: 
B=1.5 T
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Event Rates on the Event Rates on the (4S) Energy(4S) Energy
Event Type Cross Section Event Rate *

bb
cc
ss
uu
dd


 




 



1.05 nb
1.30 nb
0.35 nb
1.39 nb
0.35 nb
0.94 nb
1.16 nb

~65 Hz

e

 

e 50 nb 
 

500 Hz
Beam 

background
> 20 kHz

* at PEP-II luminosity of about 1034cm2s1
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Why and How to Trigger?Why and How to Trigger?
• Data processing is limited to a few hundred 

Hz  trigger to select interesting events 
• BaBar trigger characteristics:
 Continuous readout & pipelined
 Trigger lines defined by generic topology 

• Goals: 
 Eliminate background as early as possible
 Keep interesting physics events

• Challenge: 
 Maintaining high efficiency for physics while 

reducing trigger rate with limited time to make 
decisions
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• Level 1 (L1) is a hardware based Trigger

• Level 3 (L3) is a software based Trigger
– Slightly more sophisticated algorithms used to 

separate background physics processes from the 
interesting processes.

– A farm (composed of 50 Linux dual-core CPU’s)

A Snapshot at What a Trigger DoesA Snapshot at What a Trigger Does

Calorimeter Trigger
(Neutrals)

Drift Chamber Trigger
(Tracks)

Muon Trigger
(Tracks)

Global Trigger L1 acceptsL1 accepts

~2500 Hz~2500 Hz

Execute algorithms:Execute algorithms: ~10 ms per event~10 ms per event

L1

L3

~350 Hz~350 Hz

~ 238 MHz~ 238 MHz

~12 ~12 s latencys latency
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Searches for new particles
• Charm spectroscopy
• Charmonium 
spectroscopy
• Exotic hadrons?

Explore the Flavor Physics of QuarksExplore the Flavor Physics of Quarks
Flavor mixing
• Magnitudes of CKM 
elements: Vcb , Vub , Vtd , Vts .

CP-violation
• Phases of CKM elements from 
CP violating observables: , , 

 
(3 , 1 , 2 )

Effects of new physics
Look for unexpected
• Decay rates
• Patterns of CP asymmetries
• Kinematic distributions

Studies of decay dynamics
• Test predictions of heavy-quark expansions
• Test QCD predictions
• Semileptonic, leptonic, hadronic, and rare decays
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Selected Physics TopicsSelected Physics Topics









eeee
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 )1
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Discrete Symmetry Operators: C, P, TDiscrete Symmetry Operators: C, P, T

incoming outgoing

e e

e e

e e

C

P

T

s

reverseds p 

:  C a a

:  P r r 
 

Discrete symmetry transformations: multiplicative (not additive)
quantum numbers. The weak interactions violate C, P, CP, T.

Charge conjugation

Parity

Time/motion reversal
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Physics ProcessesPhysics Processes

One-photon processes Two-photon processes

Two-Photon Physics

C= C=+

c


c

e

e

Event topology:

e+

e-

e+

e-

e+ e-
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LeptonicLeptonic Decays of Charged Heavy MesonsDecays of Charged Heavy Mesons
:Example ccee 
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Why Is Why Is LeptonicLeptonic Decay Important?Decay Important?

• It gives access to the decay constant and the CKM matrix element.

• Only one hadronic current is involved  theoretically easier to calculate in QCD.

• It provides calibration for decay processes involving mesons containing b quarks.

•

 

Lattice predictions for fB /fBs are a key part in translating B and Bs mixing rates into 
CKM constraints. 

• Leptonic B decays provide interesting sensitivity to new physics (tree-level 
sensitivity to charged Higgs).
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LeptonicLeptonic Decay of MesonsDecay of Mesons

Decay 
Mode

Decay 
Constant

CKM 
Element

D+ l+ fD Vcd 0.23
Ds

+ l+ fDs Vcs 0.97
B+ l+ fB Vub 0.004

M+ l+

Helicity suppressed

J=0

lepton mass effects

 Measure the decay constants fD , fDs to compare with Lattice QCD


 

Experimentally hard to measure because of CKM suppression, helicity 
suppression, and neutrino reconstruction.
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Analysis of DAnalysis of Dss 
 

from BaBarfrom BaBar

fDs =(28317714) MeV

PRL 98, 141801 (2007)

M=M()-M() (GeV/c2)

230.2 fb-1

Ds
*+



e+ e-

D(s)
-

Ds
+


+



 

Reconstruct a charm decay as tagging 
D, D*, Ds


 

Look for a + and “reconstruct” a 

 

from 
(Emiss ,pmiss )
 Combine 

 

and 

 

to make a Ds
 Combine Ds with a 

 

to make a Ds *
 Compute M=M()-M() 
 Subtract background 

 sidebands of the tag sample
 electron sample



 

Fit M distribution to extract signal 
events

Use Ds 

 

for normalization
because of unknown production 
rate of Ds

(*)

Partial reconstruction method

Signal: e+e- xD(s) Ds *, Ds * Ds , Ds 

Tag side

Tag sideband

Tag sideband
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Analysis of DAnalysis of Dss 
 

from Bellefrom Belle
e+e-DKXDs

*, Ds
* Ds , Ds 

where X: n() and up to one 

PRL 100, 241801 (2008)

548 fb-1
• DS is not observed but inferred 

from calculating the neutrino 
candidate mass: Mrec

2(DKX)
• No normalization mode needed
• High signal-to-backgroud ratio

Full reconstruction method

fDs =(2751612) MeVe+ e-

D

Ds
*+

Ds
+




+

K
X

Tag side
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Analysis of DAnalysis of Dss 
 

from CLEOfrom CLEO--cc
Ds

++

PRD 79, 052001 (2009)

Background
Ds sidebands+

600 pb-1

CLEO-c: e+e-Ds Ds * at 4170 MeV (2009)

Similar method can be applied to BES-III data!

e+ e-

Ds
-

Ds
*+

Ds
+





+

   222MM  ppppEEEE
ss DCMDCM 

Tag side

fDs =(263.38.23.9) MeV

Full reconstruction method
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Experimental Results and PredictionsExperimental Results and Predictions
• More progress can be 

made from BaBar, 
Belle, and BES-III.

• Possibility to probe new 
physics


 

Charged Higgs boson or 
leptoquark

H+

PRL 100, 241802 (2008)

fDs (MeV)

~3

 

discrepancy
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TwoTwo--Photon PhysicsPhoton Physics

hadrons
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What Is TwoWhat Is Two--Photon Physics?Photon Physics?
• It is the study of interactions between two 

photons.
• Electron-positron machines allowed first 

observation of 
 

processes. 
• Unique feature: produce hadronic states with 

C=+   have access to some states that 
might not be produced or detected otherwise
 Examples: c , non-strongly interacting 

supersymmetric particles, Higgs bosons, etc. 
• Good calibration channels:    ee, 
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Early History of TwoEarly History of Two--Photon PhysicsPhoton Physics
• 1932: Early interest after the discovery of positron
• 1960: Theoretical papers relevant to two-photon 

physics at e+e- storage rings 
–

 
resonance production (by F. Low)

–
 

meson pair production (by F. Calogero and C. Zemach)
• 1969: First experimental results on two-photon 

QED reactions from Novosibirsk and Frascati. 
• 1969-1970: Theory papers on hadrons
Brodsky, Kinoshita, and Terazawa: 

 
collisions will 

become dominant as the energy increases. 
• 1979: Experimental activities resumed by Mark II at 

SPEAR (SLAC)
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““RecentRecent”” Discoveries from Discoveries from 
 

FusionsFusions

DDZ  )3930(

events 8.8 2.4
2.3




825 fb-1

Y(4350)J/

 

(>3.2) (Belle,2009)

Candidate for a charmonium state c2 
(5.5) (Belle,2005)

PRL 96, 082003 (2006)

(6.5) (CLEO,2004)

280 fb-1

PRL 92, 142001 (2004)
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Why Is TwoWhy Is Two--Photon Physics Interesting?Photon Physics Interesting?

• Study or look for C=+ resonances
• Photon-to-meson transition form factors
 Window to hadron distribution amplitudes
 **0, f0 ,, , c , b , etc.

• Exclusive hadron pair production in two- 
photon reactions

• Photon structure function
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Three Different Kinematic ConditionsThree Different Kinematic Conditions
Double-tag: the scattered e

 
and e

 
are both 

detected
 Ideal for two-photon physics

Single-tag: only one scattered e

 
or e

 
is 

detected
 Determination of the Q2 dependence of resonance 

couplings or of the total cross section
No-tag: neither the e

 
nor the e

 
is detected 

 Preferentially small total transverse momentum pT 
of the detected particles  restrict both Q2 values to 
be small

La
rg
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• eeee*, where *
 

in the single-tag mode:

• The differential cross section for this process depends 
on only one form factor F(Q2) = 

 
T(x,Q2) 

 

(x, Q2) dx.

• Experimental data on F(Q2) help determine the 
unknown dependence on x for 

 

(x, Q2).

An Analysis of An Analysis of 
 

* *  00

Tagged: momentum transfer Q2 = q1
2 = (p p')2 >3 GeV2

Highly virtual photon

Untagged: momentum transfer q2 = q2
2 

 

0 GeV2

 Quasi-real photon

(x = fraction of the 

 

momentum carried by one of the quarks)

Calculable hard- 
scattering amplitude 
for 

 

 qq

Nonperturbative 
pion distribution 
amplitude (DA) for 
qq  
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The The 00 Transition Form FactorTransition Form Factor

The Chernyak-Zhitnitsky DA (CZ)
The asymptotic DA (ASY)
The DA derived from QCD sum rules 
with non-local condensates (BMS)

Phys. Lett. B508, 279 (2001)

Nucl. Phys. B201, 492 (1982)

Phys. Lett. B87, 359 (1979)

Data:                   Q2F(Q2)

 

~ Q1/2

Leading order pQCD: Q2F(Q2)

 

~ const.
(in the asymptotic limit)

f2

PRD 80, 052002 (2009) 

Predicted asymptotic limit

After public release of this result, a flat 
pion distribution amplitude is used to 
reproduce the Q2 dependence of BABAR 
data.

A.V. Radyuskin, arXiv:0906.0323  
M.V. Polyakov, arXive:0906.0538
H.N. Li and S. Mishima, arXiv:0907.0166
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Analysis of Neutral Pair ProductionAnalysis of Neutral Pair Production
• At the B factories, two-photon physics can be studied from the 

process: e

 

e

 

 e

 

e

 

  .
– no-tag analysis: e

 

e

 

scatter at very small angles and escape 
undetected

• What: study meson pair production   MM, where M can be 0 or 
• Why:

– Neutral pair production allows a determination of the meson wave 
function

– Test QCD models: pQCD vs “handbag model” for hadron pair production
• Why now:

– The virtual photon flux falls off rapidly at increasing center of mass energy 
W, so it had been difficult to use the two-photon reaction to study high- 
mass final states.

– But, the high luminosity at the B factories makes this possible.
• Goal: measure the neutral pair production cross sections and angular 

distributions from BaBar data taken at 

quasi-real photons  dduu 
2

10
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An Event Display of An Event Display of 
 

 0000

• A x-y view • A -z view:
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Results of Results of 
 


 

 0 0 00 from Bellefrom Belle

*: the 0 scattering angle in the 

 

CM frame

f0 (980)

f2 (1270)

f4 (2050)

(   ) for cos*<0.8:

PRD79, 052009 (2009)

223 fb-1

c0

c2

observed are states charmonium  The cc



Selina Li, SLAC
University of Hawaii 
Physics Colloquium

36

What Have We Learned from What Have We Learned from 
 

PhysicsPhysics??

• Resonance production
– The charmonium c0 and c2 states are observed 

in 00.
– Search for new/exotic resonance on going

• Angular analyses: 
– Non-perturbative QCD  perturbative QCD
– At high energy, differential cross section ~ sin-4* 

as predicted by pQCD
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Prospects for Prospects for ee++ee-- CollidersColliders
• The B-factory and flavor physics experiments (i.e. 

BaBar, Belle, BES-III) are complementary to the 
Large Hadron Collider program.


 
High statistics data samples give sensitivity to rare 
decays  good place to search for new physics



 
Explore the deviations from SM in flavor physics

• Next phase in flavor physics studies: 


 
Belle-II/SuperB are great facilities for precision tests

• Potentials in two-photon physics:


 
Search for new resonances with C=+



 
(Light) Higgs production 



 
(Light) supersymmetric particle production



 
More single- and double-tag analyses possible
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ConclusionsConclusions
•

 
The B factories continue to explore the richness of flavor 
physics and produce significant physics results.

• Improved precision measurements of Ds decay are expected:
– Large datasets from BaBar and Belle (and even more from Belle-II)
– Unique datasets to study Ds meson from BES-III
– New physics effects or not? 

• Two-photon physics should be explored further
– To gain full potential for discovery
– To help understand the fundamental hadron wave function and the 

photon structure

• A lot of interesting physics is still waiting to be explored.
• Some of the big questions in particle physics can be 

answered with our current and future experiments. 
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