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Solving the Dark Matter Problem

• Clear evidence for 
Dark Matter from 
Experimental 
Cosmology
– Undiscovered 

elementary particle ?

• Multiple experiments 
needed to clarify
– Produce DM particle
– Measure it precisely
– (In)Directly Detect DM

Sven Vahsen Hawaii Colloquium, October 8th 2009 2

Exciting: Next Discoveries possible soon at Large Hadron Collider! 

Compare results do we understand
- DM Production in early universe?
- DM in our galaxy today?



Outline

• Introduction

– The Standard Model of Particle Physics

– Why the Standard Model is not enough

– The Dark Matter: Supersymmetric Particle?

• Hadron Colliders

• Lepton Colliders

• Direct Dark Matter Detection
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• Probing the Dark 
Matter Problem

• How Silicon Pixel 
Detectors help



“Ordinary Matter”

• All ordinary matter 
consists of Atoms
– human beings

– everything in this room

– the earth

• Three types of 
elementary particles
– up

– down

– electron
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quarks

lepton



The Standard Model of Particle Physics

• Physicist have produced 
additional particles in the 
laboratory
– Heavier and unstable 
– Present in earlier universe

• Theoretically described by 
“Standard Model” since early 
1970s
– A success story,  survived 

numerous experimental tests

• Only Higgs Boson has not been 
found experimentally
– Gives mass to particles
– Required for mathematical 

consistency at high energies
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H
mass

175 GeV (=proton masses). Discovered 1995.



Are we there yet?

“So we just need to find the Higgs now… 
…and then we’re done with particle physics?”
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H



Why we are not finished
• We dream of a deeper, all 

encompassing theory, that
– unifies all forces in nature
– explains flavor structure
– solves hierarchy problem

• Observations not explained by 
the standard model
– neutrino masses (1998)
– dark energy (1998)
– dark matter (1933, 2003)
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Super
Strings?



Surprise from Experimental Cosmology

• Standard Model particles 
accounts for only 5% of 
energy in the universe

• The big question: 
What is the rest?

• Last decade: Significant 
advances in experimental 
cosmology

 Precise Cosmological
Standard Model
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4.6%
Baryons

23%
Dark 
Matter

72%
Dark Energy
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What does the Dark Matter consist of?
http://home.slac.stanford.edu/pressreleases/2006/20060821.htm

The Dark Matter may consist of undiscovered elementary particles - WIMPS. 
A favorite WIMP candidate is the Lightest Supersymmetric Particle

Ordinary (baryonic) matter

WIMPs ?



Models in this talk: mSUGRA, Lightest Neutralino         is Dark Matter candidate

• Possible Extension of Standard Model
– Symmetry: Bosons ↔ Fermions
– Each presently known particle has a partner with Δs=1/2

• Partners with same quantum numbers mix 
– EW gauginos + Higgsinos  2 charginos                

4 neutralinos 

Supersymmetry (SUSY)
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SUSY May Explain Dark Matter

• Amazingly, SUSY can get the dark matter density exactly right
• Tends to happen when new particles are light
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c0
1 

~

mSUGRA

SUSY 
particle
mass

 Should see SUSY particles at Large Hadron Collider!



Particle Accelerators

how we arrived at the standard model 
& how we hope to go beyond



Particle Physics: Tools of the Trade
Proven recipe over last 100 years - since days of Rutherford

– Accelerators: Collide known particles (e or p) together hard 

– Detectors: See what comes out of collisions
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Resolving Sub-structure

• Standard Model: 
Relativistic Quantum Field Theory

• Particles propagate like waves
λ = h/p ~ h/E    (De Broglie)

• Large particle energy  small λ
 resolve smaller structures

– 1950s (Hofstadter) E=0.4 GeV electrons
• λ = 3x10-15m 
 saw protons inside nucleus

– 1969 (SLAC): E=20 GeV electrons
• λ = 6x10-17m 
 saw quarks inside protons
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Creating New Particles

• Standard Model: 
Relativistic Quantum Field Theory

• Not necessarily same particle in initial / final state!
• Kinetic Energy mass via E=mc2

• If E>350 GeV  can create any known particle in standard model
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Collide known elementary particles with large Energy
 discover the particles you don’t know!

-
Electron Electron

+E

+

-



Accelerators “look back in time”…

Universe today
• T = 2.7K
• E=kT = 2.3 x 10-4 eV
• Insufficient thermal energy to 

create elementary particles

Universe at t < 10-10s
• E=kT > 100 GeV
• Thermal production of SM
• SUSY,  Dark Matter particles ?
• Most decayed / annihilated as 

universe cooled
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by re-creating processes that occurred in early universe

• Dark matter Particle: Stable & Weakly Interacting  still around today
• Need to understand physics at 10-10s to understand DM density today.



Two Types of Colliders
• Hadron Collider: Best for discovering unknown particles

– Easier to achieve high beam energy in circular accelerators 
– Different COM energy for each collision, unknown COM frame
– Large rate of collisions, but small fraction of “interesting” ones

• Lepton Collider: Best for precision studies of known particles
– Point particles  Same COM energy each collissions, known frame 
– Can tune COM energy to enhance production of specific particles
– Smaller rate of collisions, but large fraction of “interesting” ones
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Two complementary approaches with different detector challenges

e+ e-



Hadron Colliders

The Discovery Frontier



Hadron Collider History
Since 1931, circular accelerators with increasing energy
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Lawrence’s 

First Cyclotron

0.0008 GeV

Bevatron

6 GeV
Fermilab Tevatron

1 TeV on

1 TeV

Large Hadron Collider

~5 mile diameter

7,000,000 MeV  on

7,000,000 MeV

1931 1954 1983 

antiproton top quark

Historically: Large step in Energy  new discoveries



The Large Hadron Collider (LHC)
• Highest Energy Accelerator to date: Two beams of 7 TeV protons  E=14 TeV 

• 4 large detectors where protons collide

• CMS and ATLAS: Search for the Higgs Boson & Physics beyond Standard Model

• > 10,000 scientists and engineers from over 100 countries
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CMS

ALICE ATLAS

LHCb
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• 7-TeV protons kept in orbit by superconducting magnets
• 8.33T, cooled by superfluid Helium at 1.9K
• Magnet Production, Installation & Commissioning  major driver of LHC schedule
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… after installation 100 m under ground

LHC Construction

Lowering one of 1232 dipoles...



First Beams Circulated September 9th 2008
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Magnet Accident September 19th 2008
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Extensive repairs and retrofits during last 12 months.
LHC scheduled to re-start November 2009 - Exciting!



Pixels: At the Heart of ATLAS
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Detection of charged 
particles takes place in 
1744 identical ATLAS 
Pixel Modules

6 cm

Pixel

50 x 400 μm

x46080

ATLAS
ATLAS Pixel Detector

– Innermost tracking 
detector, surrounding 
beam pipe

1.3 m

1744 modules x 46080 pixels = 80 million channels!

physicist

16 FE Chips

ATLAS DETECTOR
Length  : ~ 46 m 
Radius  : ~ 12 m 
Weight : ~ 7000 tons



Tracking Charged Particles in ATLAS
• Three subdetectors inside 

2T magnetic field

• Pixels crucial for track 
finding, b-tagging, 
primary vertex finding
– σd0 ~ 11 μm

• Tracking important for 
understanding of SUSY
– measure masses with 

di-lepton final states
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ATLAS Inner Detector

spacepoints σr-Ф σz channels other info

TRT 36 (1D) 130 μm - 420K Particle ID

SCT 4 (2D) 17 μm 580 μm 6.2M 61 m2 silicon

Pixels 3 (2D) 10 μm 115 μm 80M 1.8 m2 silicon

d0



Why we need Pixels at the LHC
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Pixels just outside beampipe, must meet unprecedented performance requirements
• Perform pattern recognition in high track density environment
• Distinguishing hits 25ns apart 
• Store hits on detector for up to 3.2 μs (LVL1 trigger latency)
• Withstand huge radiation dose ~1015n/cm2

Hbb interaction
L=1034 cm-2s-1L=0

A real 
mess! 

~500-1000 
particles

40 million 
times per 
second!

Si Pixels

Si Strips

Straw Tubes



Single Pixel: Detection of a Charged Particle

• Each 50 μm –size pixel is a little 
detector with it’s own amplifier!

• How it works
– Particle at normal incidence 

liberates ~20k electron-hole pairs
– Charge swept towards bumps and 

into preamp by electric field, 
converted to voltage pulse 

– If above threshold, discriminator 
produces HIT
• Location
• Bunch crossing ID
• TOT

– Typical 
• threshold ~ 4000 e-

• noise ~ 170 e-
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50 μm

Solder bumps

High efficiency, low noise occupancy



Integration & Installation
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Completed Detector 
Installed June 2007

Endcaps integrated at 
Berkeley LAB

On the way to CERN!

Barrel integrated at CERN
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• First Cosmics in Sep 2008. 200M events, 400k with track through Pixels
• Very useful for calibration and alignment

Commissioning with Cosmic Rays

Excellent Pixel Detector Performance

• Hit efficiency: ~99.8% (excludes 
inactive detector regions)

• Noise occupancy ~10-10 per BC
(After masking ~0.01% noisy 
pixels)
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a single noise hit 
(out of 75M active pixels)

at least one hit in each 
pixel layer

Golden event



Conclusion on ATLAS Pixel Project
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• After more 
than a decade 
of work

• Pixel Detector 
installed & 
operational in 
ATLAS

• On track to 
meet design 
goals

• Ready for first 
LHC collisions!



Will ATLAS Discovery SUSY?

• If SUSY particles are 
light, the LHC will almost 
certainly produce them
– SUSY Production at 

Hadron Colliders 
calculated to NLO

– largely independent of 
model

• Actually discovering 
SUSY is challenging
– reject SM by factor of 

~1011

– decays model dependent
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• Dominated by QCD production: squarks and gluinos

• Two sparticles initially

• Decays down to Light SUSY Particle:  jets, leptons

• is stable, escapes undetected: large ET
miss

How to Discover SUSY?
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 Inclusive signatures are most promising for discovery: ET
miss, high-pT jets, leptons
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L ~ 1 fb-1: ATLAS SUSY Discovery Potential

• Good chance of finding TeV scale 
SUSY with 1fb-1 – by 2011!?

• Dream scenario!

• SUSY at higher mass scales could 
still show up later, but would 
make detailed studies difficult

• Ultimate LHC reach ~ 3 TeV
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Tevatron Exclusion, 2.1 fb-1!

Moment of Truth for TeV Scale SUSY
LHC should find it or rule it out



LHC after discovery: Mass reconstruction

How do we learn more?

• Leptonic decays important

• Example: Opposite sign, same 
flavor di-leptons from single 
neutralino decay
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• Position of mass-edge sensitive to 
combination of sparticle masses

Lq~q
q
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mSUGRA bulk region
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LHC after discovery: Mass reconstruction
• Method sensitive to any sleptons lighter than 2nd neutralino

1 fb-1

18 fb-1

SUSY

Standard Model

Lq~q
q

l
~

 

c2

0

 

c1
0

l+ l-

0.5 fb-1

Two light sleptons, 

Coannihilation region

Bulk region
Low mass 

point

Already with 1 year of low luminosity running, could learn at lot at LHC!
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• If SUSY particles light, many similar measurements possible at LHC

• At end of LHC program (10 years from now?), combine all information
 predict dark matter density resulting from thermal production in early universe
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Comparing with Experimental Cosmology
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300 fb-1

Assumes LHC friendly scenario, constrained SUSY model

May be confused after LHC  require input from lepton colliders

W c= W DM ?

• Is neutralino seen at LHC compatible with 
dark matter created in early universe?

• What fraction of the dark matter is 
neutralinos?

Polesello, Tovey JHEP 0405 (2004) 071



Comparing with Direct Detection

• Based on LHC 
measurements, also 
predict direct detection

• WIMP seen at LHC 
compatible with DM in 
our galaxy today?
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• To cover all SUSY scenarios  need ton-scale or larger direct detection experiments
• But such large detectors may be limited by irreducible backgrounds  challenges

DAMA
/LIBRA

XENON10
2007 SUSY

(300 fb-1)



Lepton Colliders

The Precision Frontier



Lepton Colliders
Precision studies of known particles, 

highly complementary to Hadron Colliders
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LEP, Switzerland

91 - 209 GeV

KEK-B, Japan

10.58 GeV

1989 1999

800 million b-quark pairs

Detector challenge at future lepton colliders will be precision. 
E.g. Will need 10x better momentum resolution than LHC detectors!

18 million Z bosons



Time Projection Chamber with Pixel Readout

• Desired momentum resolution achievable with 200 measurements of each track
– each with resolution σX, σY ~100 μm TPC with Pixel Readout?

• Also seems promising for detection of neutral particles (e.g. neutralinos)
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Readout of TPC tracking chambers with GEMs and pixel chip. T. 
Kim, M. Freytsis, J. Button-Shafer, J. Kadyk, S.E. Vahsen, W.A. 
Wenzel (LBL, Berkeley) . 2008. 12pp. NIM (2008) 

Z (beam axis)

X
Y

Dimensions
in mm!

Pixel chip



Amplification: Gas Electron Multipliers (GEMs)
• Electrons multiplied by avalanching in 

GEMs

• Off-the shelf GEMs from CERN

– 5cm x 5cm x 60 μm 

– Hole spacing: 140 μm
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• Reliable without sparking with single-
GEM gain up to 300 (Ar/C02)

• Two GEMS in series: higher gain with 
less risk of sparking: 
500V + 400V  gain = 40000

Simulated and measured gain consistent

Kapton

Copper

Gain (uncalibrated)

24% 
FWHM 

500 V multiplication factor 258
55Fe (5.9keV X-rays)



Charge Collection: FE-I3 Pixel Chip

• x/y from pixel coordinate (50x400μm)

• relative z from drift-time (25ns)
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• Noise level ~120 electrons

• 2-3 pixels out of 2880 masked 
 no noise hits

Expect good x,y resolution: gem hole spacing, pixel size
Expect good z resolution: fast electron signal & pixel FEs



Position Resolution with Cosmics
• Large sample of cosmic rays

• Require >10 pixel hits

• 3D track at least 4.5mm long

• Gain=9000, threshold=1800e-

• LC: diffusion < 100 μm w/ magnet
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FE chip readout
(16x25=400ns)

3d track fit

track fit 

residual

Diffusion σGEM+Pixel

σX (μm) 170 110 130

σY  (μm) 130 110 70

σZ  (μm) 240 190 150

Sufficiently precise for detectors at future lepton colliders!

σPixel=14 μm



Bonus: High Efficiency

• Pixel threshold at 5k 
electrons

• Rate plateaus at gain ~20k

• 20k electrons per primary 
ionization electron (vs. 20k 
electrons per MIP/layer in 
ATLAS)

• Suggest system is capable 
of collecting all the 
ionization from primary 
track - even single 
electrons!
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Can observe tiny signals!



Direct Dark Matter Detection

The Cosmic Frontier 



Detecting DM with Tracking Detectors

• The ability to read out tiny 
ionization signals with 
low/zero background is 
exactly what is needed in to 
detect Dark Matter directly

• Nuclear recoil signal
– low energy (10-100keV)

– low rate

– many backgrounds

• In a TPC with low pressure 
gas, typical nuclear recoil 
gives 1-2 mm tracks

• TPC with pixels can 
image such recoils!

 Directional Dark Matter 
Detection!
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220 Km/s

G. Sciolla

Powerful technique, highly complementary to existing direct detection approaches!

(DM-TPC)



Background Suppression
• Measuring both recoil length and energy

improves signal / background separation 
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Energy (keV)

Simulation
(DM-TPC)



Smoking Gun: Directional Signal

• Galaxy rotation  earth/solar 
system sees DM wind of ~220 Km/s

• Average WIMP direction changes 
by 90 degrees every 12h!

 smoking gun signal

• Allows suppressing directional 
backgrounds (i.e. solar neutrinos) 

• Large facility: WIMP Astronomy!
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220 Km/s

G. Sciolla (DM-TPC)

8 kpc

(DM-
TPC)



Various Size Detectors are Interesting

• Gas TPC: choose target
– e.g. CF4 to probe spin-dependent 

WIMP interaction

• 0.1 kg-y  
– 1m3 CF4 , 75 torr, 3 month

– improves spin-dependent limits 
by order ~50

• 2.7 kg-y 
– sensitive to in-elastic Dark 

Matter Scenario compatible with 
DAMA arXiv:0906.0002v1

• 100 kg-y CF4 

– probes far into MSSM (SUSY) 

(see next page!)
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DM-TPC

http://arxiv.org/abs/0906.0002v1


Spin Dependent Sensitivity
• Spin-dependent scattering dominates in some SUSY models 

– Possible that SUSY WIMP discovered first in spin dependent search!
– If it happens in SUSY, what about physics we haven’t thought of?
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E. Moulin et al, PLB 614 (2005)143

All points: MSSM without 
gaugino mass unification at 
GUT scale

Red points: models 
discoverable by ~10 kg-y  
3He spin-dependent search



Increasing Interest in Directional Detection

• 3-4 groups working on similar detectors
• Picture above is good fraction of world community
• Eventually merge into collaboration?

– “Manifesto” paper in preparation
– Proposal for large underground facility?

Sven Vahsen Hawaii Colloquium, October 8th 2009 51

Cygnus 2009: 2nd Workshop on Directional Dark Matter Detection



Conclusion

• Dark Matter is one of the 
most exciting mysteries in 
physics today

• LHC may produce it
• Full understanding of DM will 

require progress on multiple 
frontiers

• Pixels will play a crucial role, 
can help with multiple 
difficult detectors challenges
– Radiation at Hadron Colliders
– Precision at Lepton Machines
– Directionality and background 

rejection in direct detection
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The future looks bright 
for pixel detectors!


