REBAM Summary

January 11, 2019 – Watchman Collaboration Meeting

University of Pennsylvania

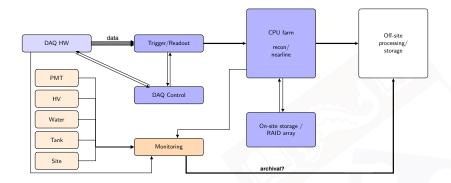
Outline

- Scope of REBAM
- Interfaces
- Point estimate of infrastructure and needs
- Open questions

Disclaimer

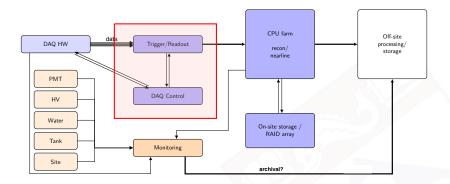
There are larger issues that impact the estimates and assumptions made here:

- AG control room
- Remote shifting
- Amount of storage UG

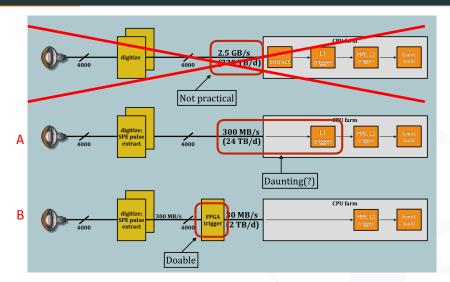

these will be approached at the end of the talk.

- Readout, Event Building, and Monitoring Working Group
- Interfaces:

Upstream: DAQ Hardware, Tank , Site, Water, HV **Downstream:** Data flow, Offline data processing/analysis


• Ultimately REBAM is responsible for ensuring quality data taking for the physics analyses by connecting all subsystems upstream

Overview schema



Readout

Readout

Readout Interface with DAQ

From Doug Cowen's pre-meeting talk

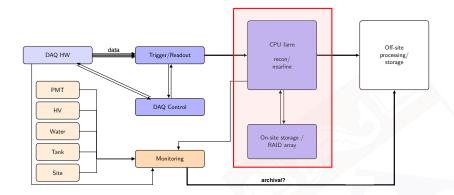
Comparison

- Similar requirements in terms of readout
- Option A : No/Limited hardware event trigger
 - Receiving (Q,T) for SPE, waveforms for events possibly non-SPE
 - + Data rate estimated \sim 300 MB/s (24 TB/d)
 - Trigger in software (integrated or not with event reconstruction)
 - Heavier processing requirements
 - Do we still want to store the waveforms?
 - Reduce final storage space by compression
- Option B: Hardware trigger
 - Receiving (Q,T) for SPE + rise time for events possibly non-SPE
 - Data rate estimated \sim 30 MB/s (2 TB/d)
 - Lower storage and processing requirements, offset by cost of trigger

DAQ Control

- Hardware:
 - 2 operator monitoring computers/event display
 - 1 DAQ control computer
 - Monitors to go along
- Software:
 - Various options available (relatively similar in terms of requirements).
 - Several people familiar with ToolDAQ
 - One of hardware options has/will soon have interface with ToolDAQ
- A few questions:
 - How many pipelines into the DAQ readout?
 - 1 per crate, single line (if hardware trigger)
 - Can restrict ethernet bandwidth/fiber vs copper

Trigger


- Hardware:
 - Reduces pressure on software/computing
 - Unsure if completely feasible on hardware
 - DAQ hardware responsibility?
 - Could be:
 - Talk-back (take only primitives and pass decision back to hardware of what to ship)
 - Push-forward (receive everything and decide if should be stored or dropped)
- Software:
 - Receive everything and process along nearline reconstruction
 - Need to ensure enough RAM/SSD buffer to process pipeline (further discussed later on event building)
 - More flexible on implementation, but can only be push-forward

Item	Description	#	Cost (unit)
DAQ operator +	Xeon E5-1620v2, 8GB RAM, 1TB	3	\$2,000
monitoring	HDD, decent graphics card		
Monitors	Seiki 39 inch	3	\$600
		Total	\$7,800

- $\cdot\,$ Should account for 1 FTE (expert engineer or technician) over $\sim\,$ 2 years
- Plus participation from GD/PD

Event Building

Readout

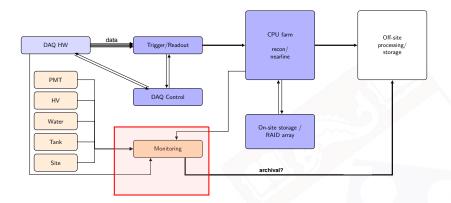
Overview

- $\cdot\,$ We want to run some level of reconstruction near the detector
- Discussions from Michael Smy about a possibility using a SK style nearline reconstruction/trigger
- Processing requirements similar for both scenarios (with or without hardware trigger). Difference in buffer storage requirements.
 - With pulse shapes, 300MB/s (24 TB/day) require extra underground storage, even with compression.
 - With hardware trigger, can loosen storage but offset with hardware construction.
- Question to site WG: What connectivity is available to outside the facility?

Straw man hardware design

- Modest processing farm, able to reconstruct muons (and followers)
- Using SK¹ as an indication:
 - \cdot \sim 64 cores
 - $\cdot~\sim$ 8 GB RAM per core
 - Investigate possibility to trade RAM by SSD
 - 10GB ethernet link to RAID array
- Overall storage on RAID array with 50 TB
 - $\cdot\,$ Assuming ability to keep data for \sim 3 days in case of connectivity loss to surface
 - · Additional storage allows for longer UG isolated operation

¹Based on discussion with Michael Smy


(Rough) Cost estimate

Item	Description	Quant.	Cost (each)
RAID array	64 TB (56 usable with Raid5 +	1	\$11, 375
	spare)		
CPU Farm	PowerEdge 40 core, 128 GB SSD,	3	\$4,821
	64 GB RAM		
Network	12 port 10GBps SFP+, 8 port	1	\$2,000
Switch	1GBps		
		Total	\$27,838

- Need up to date quotes (oldest is 3 year old)
- Compiling alternative scenarios based on decisions/requirements
- Assuming 2 FTE \times 2 year for this part (plus additional GD/PD)

Monitoring

Readout

- Needs further discussion to define responsibilities and interfaces with relevant subsystems
- Two types of monitoring:

Physics: Nearline data quality, Channel occupancy, Data flow monitoring

Detector: Slow controls, computing infrastructure

• We want to know if any hardware fails

- Need to define metrics for quality of data being observed
- Inputs from different sources:
 - Directly from data stream:
 - PMT occupancy, trigger rate
 - From reconstruction
 - Spatial distribution of events

Detector monitoring/Slow controls

- DAQ hardware/PMT/HV
 - PMT voltage, current, baselines, Hardware state, deck temperature
 - Needs coordination with relevant subgroups to define formats and responsibilities
- Tank/site
 - Water temperature, resistivity, flow rate, deck temperature, any other relevant monitored quantities on site
 - Needs coordination with water, tank and site groups

Item	Description	Quant.	Cost (each)
Physics	2x Intel Xeon E5-2420v2, 32GB	1	\$4,793.00
monitoring	RAM, redundant PSU		
Slow Con-	Same as above	1	\$4,793.00
trols			
		Total	\$11,586

- Slow controls shouldn't require much in terms of processing power, but may have specific requirements for sensor readout
- \cdot Assuming 1 FTE \times 2 year for setup and integration

Putting it all Together

Point Cost Estimate Summary

Item	Description	#	Cost (unit)	
Readout/DAQ Control				
DAQ operator +	Xeon E5-1620v2, 8GB RAM, 1TB	3	\$2,000	
monitoring	HDD, decent graphics card			
Monitors	Seiki 39 inch	3	\$600	
Event Builder/Reconstruction				
RAID array	64 TB (56 usable)	1	\$11,375	
Processing farm	40 core, 128 GB SSD, 64 GB RAM	3	\$4,821	
Network Switch	12 port 10GBps SFP+	1	\$2,000	
Monitoring				
Monitoring ma-	2x Intel Xeon E5-2420v2, 32GB	2	\$4,793.00	
chines	RAM, redundant PSU			
Total			\$53,024	
Total with 50% miscellaneous			\sim \$80000	

Some notes on estimate

- Miscellaneous refers to parts not listed that we will need (cables, extra switches, extra machines, more storage)
- No contingency has been included
 - Need backup machines ready to take over in case of failure
- Each operator/monitoring machine requires 2U. Raid requires 4U.
 - Including redundancy/spare machines should in principle need 2 racks
- Haven't considered yet power/cooling requirements
- Cabling considerations between detector and control room not included

Number of FTE corresponds to experienced egineer/technician

- + 1 FTE \times 2yr for interface with DAQ control
- + 2 FTE \times 2yr for nearline reconstruction and trigger
- 1 FTE × 2yr for monitoring implementation/integration with other systems
- In total, estimate the equivalent of 8 FTE × yr over the span of the implementation of the whole system (3-4 years)
- \cdot Estimate effort being complemented by a team of 4 GS/PD \times year

Other Considerations And Questions

Site and Data Flow

• Where does the purview of REBAM end?

- At the fence of the site?
- Where is data going to be stored long term? How will it be shipped there?
- Where's offline processing done?
- What requirements and implications into the design at site?
- Do we need an AG control room?
 - Run all shifts underground until remote shift CRs are available and validated?
 - For now assuming no AG control room
- Do we plan to set up remote shifting?
 - · Should this be considered funded by operations or construction?
 - Should we plan this immediately along construction or focus on installation on site and set up remote shifting later?
 - Need to define requirements in terms of equipment, latency, security to site access

Software

- DAQ Control
 - A single proposal has been put forward: ToolDAQ
 - I am not very familiar with it personally, but it was highly recommended
 - Will be used in ANNIE, so there's value in reusing existing code (eg.: if KOTO DAQ HW is downselected)
 - Decision may have constraints from DAQ hardware solution
 pursued
- Nearline reconstruction
 - SK nearline reconstruction (Michael Smy)
 - ToolAnalysis (Matt Wettstein)
- Data format
 - Offline format should be the same (or a subset) of the MC format
 - Might be worth some effort in estimating if what we (RAT-PAC) have now is adequate
 - Online format will likely depend on the details of DAQ hardware

Storage and data shipping

- How long do we want to be able to store data UG?
 - Estimate based 50 TB.
 - \cdot Depending on details of data format/compression options should allow for \sim 3 days
 - Do we need more? How long?
- What kind of connection is available UG/AG?
 - Is it shared with anyone else?
 - What is the effective bandwidth available?
 - Need to consider how much data we accumulate per day vs how much can we ship off-site

Yet More Questions/Requirements

Database Need one locally for reconstruction. What is stored? Which format?

- RAT-PAC uses CouchDB (in SNO+ we moved to PostgreSQL)
- Additional server and manpower needed
- **UPS** Separate UPS for control room? Use detector UPS?
 - Constraints on requirements from site, LLNL, collaboration
 - Not included on the cost estimate yet.
- **Remote power control** Gracefully shut down the detector if problem arises and no immediate access possible
 - Automatic shutdown if UPS reaching end of charge
 - Installation Outsource? Draft from within the collaboration?
 - Enough people familiar with this kind of infrastructure available?
 - \cdot In SNO+ 5 grad students/postdocs did the whole thing in \sim 2 weeks

- DAQ HW interface
 - Vertical slice test with DAQ hardware is the obvious moment to carry this out
 - Urgent item. Should be coordinated with DAQ hardware
- Monitoring
 - Test integration as systems and interfaces become available
- Estimate allocation of 1 FTE for this effort

Conclusion

- Determination of requirements being assembled
 - Have straw-man estimate based pre-meeting discussions
 - Many points still under discussion
- Manpower needed on several fronts
 - Slow controls
 - Reconstruction
 - DAQ software implementation/testing/prototyping
- Further discussion on interfaces and requirements needed
- Will be dedicating some time for REBAM on DAQ meetings
- Will start drafting text for CDR
- Feel free to contact me if have any questions, suggestions or offers for contributions