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A NOVEL ANTIMATTER DETECTOR BASED ON X-RAY DEEXCITATION OF EXOTIC ATOMS
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ABSTRACT

We propose a novel antiparticle detector. The gaseous antiparticle spectrometer (GAPS) effects particle
identification through the characteristic X-rays emitted by antiparticles when they form exotic atoms in
gases. GAPS obtains particularly high grasp (effective area-solid angle product) at lower particle ener-
gies, where conventional schemes are most limited in their utility. The concept is simple and lightweight,
so it can be readily employed on balloon- and space-based missions. An extremely powerful potential
application of GAPS is a space-based search for the neutralino through the detection of a neutralino
annihilation by-product-—the antideuteron. Paradoxically, this space-based search for the neutralino is
capable of achieving comparable sensitivity to as yet unrealized third-generation, underground dark
matter experiments. And GAPS can obtain this performance in a very modest satellite experiment.
GAPS can also provide superior performance in searches for primary antiprotons produced via neutral-
ino annihilation and black hole evaporation and in probing subdominant contributions to the anti-
proton flux at low energies. In a deep space mission, GAPS will obtain higher sensitivity for a given
weight and power than BGO calorimeters.

Subject headings: atomic processes — cosmic rays — dark matter — techniques: spectroscopic
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F1G. 5.—Operating principal of the GAPS detector using antiprotons
as an example.

...but key science target
of opportunity remains
the same!

Mori et al (2002)

this curve also
evolved quite a bit

...design (and acronym)
has significantly evolved
(see Sean Quinn's talk
earlier today)

T; (GeV/n)

F1G. 3. Interstellar flux of secondary antideuterons (heavier solid
curve) decreases at low energy, whereas the energy spectrum of the anti-
deuterons from supersymmetric origin (curves a-d) tends to flatten (from
Donato et al. 2000).
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F1G. 11.—Comparison of the upper limits of the ratio He/He
Six candidates are in the mass region of 3He and
two in the mass region of “He.

1.3. Antihelium

The discovery of a single antihelium atom is co >lPelling
evidence for the existence of an antimatter domain’ in the
universe. Such searche*s are highly problematic and thus
difficult to motivate ‘In particular, observational con-

" - : |
Mori et al (2002) Scooped Vivian Poulin 17 years ago!

More events are necessary to augment the significance and
ensure that there are no backgrounds.



To anybody who has been working for
almost two decades on indirect dark matter

searches, a virtually "background-free"
channel is a Holy Grail!
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Mmantideuterons suffer a very low secondary and tertiary
ound 3

» o1Ns, therefore providingla privilegec
detection techmique. The recent publication © irst upper limit on the
low energy antideuteron flux by the BESS Collaboration, a new evaluation
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Bottom line: there

exist large overall
| “ i . uncertainties on
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o Excluded by antiproton flux
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Broadly, these results on complementarity remain true

(some of the points might have been killed by LHC)

Baer & Profumo, 2005
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First calculation of antihelium from DM

(soon followed by Cirelli+ 2014)

PHYSICAL REVIEW D 89, 076005 (2014)
Antihelium from dark matter

Eric Carlson,'”" Adam Coogan,"*' Tim Linden,"**** Stefano Profumo,'** Alejandro Ibarra,>" and Sebastian Wild>""
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3Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
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5Ph'ysik-Departmem T730d, Technische Universitit Miinchen, James-Franck-Strafle, 85748 Garching,

Germany
(Received 9 January 2014; published 8 April 2014)

Cosmic-ray antinuclei provide a promising discovery channel for the indirect detection of particle dark
matter. Hadron showers produced by the pair annihilation or decay of Galactic dark matter generate
antinucleons which can in turn form light antinuclei. Previous studies have only focused on the spectrum
and flux of low energy antideuterons which, although very rarely_are occasionally also produced by
cosmic-ray spallation. Heavier elements (A > 3) have instea 4' strophysical background
and a primary yield from dark matter which .(.),, ture experiments. Using a
Monte Carlo event generator and an event-by-event phase Space analysis, we compute, for the first time, the
production spectrum of *He and *H for dark matter annihilating or decaying to bb and W+ W~ final states.
We then employ a semianalytic model of interstellar and heliospheric propagation to calculate the *He flux
as well as to provide tools to relate the antihelium spectrum corresponding to an arbitrary antideuteron
spectrum. Finally, we discuss prospects for current and future experiments, including GAPS and AMS-02.

DOI: 10.1103/PhysRevD.89.076005 PACS numbers: 95.35.+d

I. INTRODUCTION decay of WIMPs to hadronic final states—generic to
models coupling WIMPs to the weak gauge bosons or
quarks (e.g. WTW~ or bb). While large astrophysical
backgrounds often prohibit the clean disentanglement of

a_ abdb a2 adA . _

Within the paradigm of weakly interacting massive
particle (WIMP) dark matter, the pair-annihilation or decay
of dark matter particles cenerically vields high-enerey



It was critical to assess (1) systematics from
coalescence picture (2) relative Dbar and 3Hebar ratio
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> Ratio depends on
annihilation mode
and DM mass

» Can be anywhere
from O(0.1) to O(104)

Xx —bb, 1000 GeV XX —WW, 2000 GeV

Carlson+ 2014



Comparatively, the uncertainty from
propagation is small (~20%)
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» Thermal cross section;
only propagation
uncertainties shown
(not coalescence)

» WW final state, and
large masses, are a
long shot! (x100!)

» 3He detection not
unreasonable for
canonical DM density
and annihilation cross
sections, and low
masses, at GAPS (SAT)

Carlson+ 2014



SamTing's Alpha Magnetic
Spectrometer was ddivered to
space in 2011 on the next-to-last

space shuttie flight.

SAM TING'S LAST TEASE

How the physicist’s aging space magnet, in a final flourish,
may have trapped heavy antimatter

Downloaded from http://science science

By Joshua Sokol

erately as he gets ready to deliver | nalname, when “AM” stood for “antimatter” | and weirder form of antimatter. The AMS,

am Ting speaks softly and delib- | finally delivering on the promise of itsorigi- | that the AMS may have trapped a bigger
some juicy news to his audience. So far, the AMS has measured the masses | he says has seen a handful of candidate

Science, April 2017



An anti-Helium candidate:

Momentum = 40.3 +2.9 GeV/c
Charge =-2

Mass 2.96+0.33 GeV/c?
Velocity 0.99730.0005 ¢
69

See Alberto's presentation today!

Ting, AMS CERN, December 2016



PHYSICAL REVIEW D 96, 083020 (2017)
Origin of the tentative AMS antihelium events

Adam Coogan” and Stefano Profumo’

Department of Physics and Santa Cruz Institute for Particle Physics, University of Califomia,
Santa Cruz, California 95064, USA
(Received 31 May 2017; published 31 October 2017)

We demonstrate that the tentative detection of a few antihelium events with the Alpha Magnetic
Spectrometer (AMS) on board the International Space Station can, in principle, be ascribed to the
annihilation or decay of Galactic dark matter, when accounting for uncertainties in the coalescence process
leading to the formation of antinuclei. We show that the predicted antiproton rate, assuming the antihelium
events came from dark matter, is marginally consistent with AMS data, as is the antideuteron rate with
current available constraints. We argue that a dark matter origin can be tested with better constraints on the
coalescence process, better control of misidentified events, and with future antideuteron data.

DO 10.1103/PhysRevD.96.083020

examples, ranging from the Galactic center excess to the
positron fraction excess to the 3.5 keV line, possible DM
signals have well-known, plausible astrophysical counter-
parts. Conclusively discriminating between a DM origin

Coogan and Profumo (2017)

cautiously states that “it will take a few more years of
detector verification and to collect more data to ascertain
the origin of these events™ [5].

Event misidentification notwithstanding, in this study we
consider the possibility that one or all of the tentatively
detected antihelium events stem from DM annihilation or
decay (for definiteness, we will hereafter focus on anni-
hilation, but our results would apply directly to decaying
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one 3He per year
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FIG. 2. Asin Fig. 1, but for the predicted antiproton and antideuteron fluxes for 100 GeV (yellow lines) and 1 TeV (blue lines) dark
matter particles pair-annihilating into W+ W~ (left panel) and bb (right panel), normalized to yield one *He per year overall. Spectra are
computed using ¢ = 500 MV, MethodAnn and MAX propagation.

one 3He per year

Coogan and Profumo (2017)



4) A word on dark matter

Could anti-helium (*He) events be produced by DM?
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FIG. 2. Asin Fig. 1, but for the predicted antiproton and antideuteron fluxes for 100 GeV (yellow lines) and 1 TeV (blue lines) dark
matter particles pair-annihilating into W+ W~ (left g panel), normalized to yield one *He per year overall. Spectra are
computed using ¢ = 500 MV, MethodAnn anfl MAX propagation.

one 3He per year

Coogan and Profumo (2017)
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» 3He from DM: a
potentially self-
consistent picture

> Can be tested with
better constraints on
coalescence momentum

» Predicts features in pbar
and Dbar — better
statistics and control
over misidentified
events will allow sharper
predictions

» To do: GeV (<10) DM!
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