

GAPS: Instrument Design and Recent Developments

Sean Quinn _{spq@ucla.edu} on behalf of the GAPS collaboration

> 2nd Antideuteron workshop March 28, 2019 UCLA

Introduction & overview

- General AntiParticle Spectrometer (GAPS)
- Primary arrested in active volume, forms excited exotic atom
- Decay produces unique X-rays associated with primary
- Additional information gleaned from annihilation products
- No permanent magnet
- In this talk
 - GAPS history
 - 1) TOF
 - 2) Si(Li) tracker
 - 3) Ballooncraft system
 - 4) Thermal regulation system

T. Aramaki et al., Astroparticle Physics, Volume 74, 2016, Pages 6-13

Pioneering Si(Li) research and KEK beam tests

- Complete fabrication procedure from raw material to detector developed at Columbia, MIT, JAXA and Shimadzu Corp.
- Beam line targets developed in mid 2000s, GAPS prototypes in mid 2010s
- Detection concept tested and verified at accelerator

Counter

(S1-S4)

T. Aramaki et al., Astro. Part. Phys., Vol. 49, 2013, pg. 52-62

P2

P1

P5

Veto

Counter

Nal

Housing

Prototype GAPS (pGAPS)

- Miniaturized version of GAPS constructed in 2012
- Included main detector components
 - 3 layer scintillator/PMT TOF
 - 6 commercial Si(Li) disks
- Payload included prototype oscillating heat pipe (OHP) thermal system (test bench)
- Successfully launched from Hokkaido June 3, 2012

INFN

Low energy cosmic ray antimatter & DM search

- GAPS designed with 0.05 < T < 0.25 GeV/n antideuterons in mind
- Exotic atom technique gives powerful discrimination between species
- Can look for heavier isotopes (e.g. He), subject to distinct systematics compared to spectrometers
- Some overlap with complimentary experiments (BESS, AMS-02)
- Design permits 1000-2000 antiproton detections in completely new energy regime: one order more than BESS

- Online DAQ run time of 1000 hours
- One antideuteron detection at 99% confidence for expected sensitivity

- 2 layer design: umbrella & cube
- Plastic scintillator: Eljen EJ-200
- Counter form factors:
 - 1.8 m x 16 cm x 6.35 mm
 - 1.1 m x 16 cm x 6.35 mm
- SiPM base optically coupled to counter ends
- 2 outputs per end
- Timing requirement: ~500 ps
- β resolution better than 12%
- Primary charge resolution of 0.25
- Horizontal position within ± 10 cm
- Two level hierarchical trigger system

TOF System: mechanical

- Spatial extent and large area presents unique mechanical challenge
- Novel carbon fiber structure provides mounting point for counters
- Initial Aluminum clamp assembly tested, moving toward simpler fabric strap
- SiPM base attached to counter end with U-channel assembly
- Sealed with blackout material

- 4 main subsystems:
 - Power distribution board
 - SiPM/preamp + read out (digitizer)
 - Local + master trigger board (initiates TOF & Si(Li) read out)
 - TOF CPU (ingests all data, organizes compressed format for telemetry)

- SiPM: Hamamatsu S13360-6050VE @ 4x10⁶
- Transimpedance architecture (op-amp) w/ pole zero cancellation. 90 mW
- High gain timing channel: 0-33 MIP (to readout board)
- Low gain trigger/veto channel: 1-110 MIP (to local trigger board)
- Gain actively controlled by power distribution board

NIMA 846, pp. 106-125, 2017

Read out board prototype

- DRS4 based sampler
- V1 board fab + assembly, April 2018
- Testing & debugging: April-August 2018
- Basic control of DRS4 and successful readout
- V2 design complete: moves to SOC architecture

INFN

italiana

Trigger design & performance

- Trigger efficiency
 - >80% for antideuterons
- >50% for antiprotons
- Level 1 based on multiple threshold levels
- Level 2 based on L1 hit patterns
- Level 3 based on online processing of event topology
- Raw background rate ~1 MHz
- L1 & L2 background rej.: ~ 300
- L3 background rej.: ~25
- Total: ~7500, expected rate 280 Hz

- **10 layers** with 10 cm separation
- 100 mm dia. Si(Li) wafers, 2.5 mm thick
- 8 strips per wafer
- EPS foam + AI support structure
- 11520 channels
- Operating temp: -40±5 C
- 4 keV spectral resolution
- Total instrumented mass: 470 kg

- Main subsystems
- High voltage supply
- Integral preamp
- 16 ch. ASIC digitizer
- FPGA DAQ backend

1m

- Tracker composed of ten planes of lithiumdrifted silicon (Si(Li)) semiconducting detectors:
 - 10 cm diameter, 2.5 mm thick, 8-strips
 - <u>Passivation</u> for environmental protection
- Tracker unit = 4-detector module
 - Interface with cooling, power, readout
 - Additional env. protection via <u>"window"</u>

Partnered with **Shimadzu Corp**., a commercial producer of Si(Li) detectors with over 40 years of experience

- Energy resolution is measured at MIT using a custom low-noise, discrete-component preamplifier and flowing liquid N2 cooling system
 - Same preamplifier design will be used for flight detector calibration
- Demonstrate <4 keV FWHM energy resolution and <1% energy linearity using ²⁴¹Am 59.5 keV and ¹⁰⁹Cd 88 keV X-rays

Si(Li) sampling and digitization

- Custom ASIC developed to satisfy formidable power and density requirements
- 32 channels / chip
- 8 mW / channel
- Dynamic range: 10 keV to 100 MeV
- Tolerates up to I_{leak} = 50 nA

INFN

- Backend handles interface with TOF trigger, control/monitoring of tracker, and DAQ
- Proven design based on COSI and GRIPS missions

Ballooncraft & telemetry

- Most components network addressable
- All links combined provide ~100 kB/s
- 2x redundant flight/analysis computers
- Flight software performs real time analysis (1000s evt/s)

- Si(Li) detectors passively cooled to achieve maximum energy resolution
- TOF system insulated from Si(Li)
- Scaled model of system recently validated on engineering flight

- GAPS will make use of a new detection technique that is complimentary to existing experiments
- Challenging requirements have resulted in a unique novel design for many systems
- Early prototypes (TOF preamp, 8 strip detectors, Si(Li) ASIC) fabricated. Early testing shows good results
- Moving forward with aggressive timeline for 2020 or 2021 launch

INFN

Thanks for your attention!

Backup

- Umbrella
 - 132 counters
- Active area: ~35 m²
- Channels: 576
- Cube
- 60 counters
- Active area: ~15 m²
- Channels: 240
- Total instrumented mass: ~870 kg

- DRS4 has excellent performance, but must be properly calibrated
- in-situ approach
 - 16 bit DAC (w/ precision reference) for amplitude
 - 25 MHz TCXO buffered for 9 input channels
 - Same technique as eval. board
 - Proposed period: every 300 s, 10000 samples at 500 samp. / s requires 20 s duration
- Expected end-to-end RMS noise: 1.5 mV, timing jitter ~100 ps

Digital back end: Read out technicalities

- Readout board partitioned into analog and digital (logic) domains
- Programmable logic (PL) fabric:
 - Controls DRS4, initiates read out
 - Accepts data from ADC
 - Transfer via AXI bus to processing system (PS)
- PS capabilities
 - Collects monitoring data (environmental, temp, etc.) via I²C
 - Linux OS

- 512 MB RAM for deep event buffering
- GbE link to TOF CPU (80 MB/s)

INFN

Off the shelf industrial board: Mars ZX2

Digital back end: Absolute timing

- Clock tree
 - Provides master frequency reference: e.g. 20 MHz
 - Clock recovered on read out boards
 - Clock synthesizer provides low jitter, phase locked references:

- Ingests all raw TOF data
- Rapid analysis
 - Primary charge estimate
 - Primary β estimate
- Real time event stream to flight computer, ~ 50 kB/s
- Gold-plated events permanently archived and telemetered
- Monitoring of 26 TOF electronic stacks + master trigger

- All components industrial grade
- Advantech for motherboard (products have balloon heritage)
- mPCIe ports expanded to SATA for more storage
- Will test in vacuum, and design custom heat sinks

Qty	Item	P/N	Power (W)	Notes
1	Motherboard		30 max.	
1	CPU (dual core)			Industrial grade
1	RAM			1.35 V, 8 GB
8	SSD		5	512 GB, SLC
2	PCI expander		0.5	
2	Gigabit switch		33	16 port

All noise components of detector well characterized

- Added confidence that I_{leak} requirement satisfied
- Allows for accurate prediction of energy resolution with temperature in flight

$$ENC^2 = (2qI_{leak} + \frac{4kT}{R_p})F_i\tau$$
 Parallel
noise
 $+4kT(R_s + \frac{1}{g_m})F_{\nu}\frac{C_{total}^2}{\tau}$ Series
noise
 $+A_fC_{total}^2F_{\nu f}$ White noise

e.g. Goulding, NIM 100 (1972) 493-504; Radeka, BNL (1974)

$$FWHM = 2.35\epsilon \frac{ENC}{q}$$

8-strip prototype: 250V bias, -37C

- Energy resolution scales with **leakage current** as expected from the noise model
- If a detector has one strip with poor leakage current, all other strips will still be useful for X-ray detection

- NASA INFN QUILLA AGENZIA SPAZIALE
- Energy resolution and leakage current scale with temperature as expected
- We will be able to predict energy resolution as a function of in-flight temperature

* Note: C_{tot} here includes significant C_{stray} due to discrete preamplifier mounting / noise.

- Expected base rate of 350 Hz
- Presents archiving challenge without further cuts
- Higher quality events selected using β (TOF) & tracker info Si(Li)
- ~4 TB for entire mission w/ 2x redundancy

Qty	Item	Unit size [b]	Total size [b]	Notes (range; precision)	
1	Paddle ID	8	8	0 to 256	P
1	Paddle A end timing	16	i 16	0 to 100 pc; 1 E pc	addl
1	Paddle B end timing	16	i 16	0 10 100 115, 1.5 25	
1	Paddle A end pulse area	addle A end pulse area 16 16 oto 350 pc; 0 0000 pc		0 to 250 pC: 0.0028 pC	e
1	Paddle B end pulse area	16	16	0 to 250 pc, 0.0038 pc	data
1	Calculated paddle total <u>p.e.</u> charge	16	i 16	0 to 250 pC; 0.0038 pC	
		Packot sizo por paddlo	00		
		r acket size per paddie	00		
25	5 Number of paddles in event				
1	Packet start char	8	8	ASCII character: "[" (left square bracket)	
1	Packet length	16	16	Supports up to 65 kb packet size	
1	Primary track beta	24	24	Beta, Beta unc, Beta figure of merit	m
1	Primary particle charge estimate	24	24	Charge, Charge unc, Charge figure of merit	<
1	Trig. info	8	8	Misc. info about trigger algorithm	er
1	Event number	32	32	GAPS event number	Ħ
1	UTC timestamp for trigger decision	64	64	Full GPS second & 1 ns precision	re
1	Paddle hit pattern	8	8	Hit/no hit bit mask	corr
1	Paddle data from top section	88	2200	Sorted by absolute time	
1	CRC ETX	8	8		0
1	Packet end char	8	8	ASCII character: "]" (right square bracket)	
1	TCP/IP overhead	240	240		
		Packet size per event	2640		
280) Trigger rate				
		Data rate [bits / s]	739200		
		Data rate [Bytes / s]	92400		
		Data rate [kilo Bytes / s]	92.4		
Rev.	2019.3	L			

- Physical/mounting restrictions create gaps in coverage along the Top-Side panel seam and Bottom-Side panel seam
 - Top Gap: 3.8 4.5 cm (exit for OHP)
 - Bottom Gap: 6.0 6.7 cm (TOF floor Gondola framing members)
- The oversized Top/Bottom panels are meant to mitigate undetected LoS into the Cube

□ Any incoming particles with zenith angle ≤58° are detected by the Cube Top panel

- Preliminary Monte Carlo simulations on just the Inner TOF, indicates -- at worst -- 4% of all incoming tracks in 4π are undetected.
- □ However, "real" coverage depends on the point of interest inside the tracker
 - Locations at the top and bottom of the tracker will have the worst coverage

- □ A small fraction of incoming particles with zenith angles $58^\circ \le \theta \le 127^\circ$ can slip, undetected through the EDGE paddles and Side panels.
- □ This won't significantly affect detection of "wanted" incoming particles
- □ It will affect ability to detect outgoing tracks after annihilation

