A Study of Astrophysical Backgrounds of Antihelium Nuclei in Cosmic Rays

Amaresh Datta, Anirvan Shukla, Carina Kanitz, Philip Doetinchem

2nd Cosmic-ray Antideuteron Workshop at UCLA, March 27-29, 2019

Antinuclei in CR

 10^{-3}

Models have suggested antideuteron flux from dark matter (DM) annihilation could have orders of magnitude lower astrophysical background below ~ 1 GeV per nucleon

 10^{-4} þ [(GeV/n)^{−1}m^{−2}s^{−1}sr^{−1} 10-5 10-6 CuKrKe MED-MAX Secondary CuKrKo MED-MAX 10-7 10-8 10^{-9} ertiary CuKrKo MED-MAX 10^{-10} 101 10^{-1} 100 10² T/n [GeV/n]

Makes \overline{d} and larger antinuclei interesting probes for DM

Figure: Predicted \overline{d} flux from Korsmeier et al. (PR D97, 103011)

AMS-02 and Antiheliums

- AMS-02 measures cosmic ray particles with high precision. Reported antihelium candidates (six ³He and two ⁴He)
- Alberto Oliva presented on antinuclei on behalf of AMS-02

This leads to new challenges and questions about the production mechanisms of light nuclei, possible backgrounds from astrophysical sources and their propagation

Coalescence Formation

- Antinucleons from DM annihilation can coalesce to form d
 or larger antinuclei (signal to search for)
- Astrophysical background : produced in interactions of CR (mostly protons) and interstellar medium (ISM - mostly hydrogen)

Coalescence production of antinuclei with mass number A and charge number Z from collision of CR species i with ISM species j:

$$\frac{E_A}{\sigma_{ij}}\frac{d^3\sigma_A^{ij}}{dk_A^3} = B_A (\frac{E_{\bar{p}}}{\sigma_{ij}}\frac{d^3\sigma_{\bar{p}}^{ij}}{dk_{\bar{p}}^3})^Z (\frac{E_{\bar{n}}}{\sigma_{ij}}\frac{d^3\sigma_{\bar{n}}^{ij}}{dk_{\bar{n}}^3})^{A-Z}$$

where parameter $B_A \propto (p_0^3)^{A-1}$; (for $ar{d}$, parameter $B_2 \propto p_0^3)$

Coalescence Parameter

 Two antinucleons coalesce to form antideuterons if in their CM frame :

$$\Delta k = rac{1}{2} \left| ec{k_{ar{p}}} - ec{k_{ar{n}}}
ight| < p_0$$

 Coalescence momentum *p*₀ for *d* formation is enegry dependent (see Diego Gomez's talk)

$$p_0(T) = \frac{A}{1 + exp(B - \frac{ln(T)}{C})}$$

 For EPOS-LHC : A = 89.6 MeV/c, B = 6.6, C = 0.73, T is kinetic energy in GeV

Figure: Energy dependence of p_0 for \overline{d} formation (PR D98, 023012)

Extension to Formation of Larger Antinuclei

All at the same time:

- For ³*He*, one can consider coalescence of all three antinucleons together (each antinucleon pair satisfies condition)
- Or coalescence of two antinucleons and the coalescence of the product with a third
- Or a combination of both (for ${}^{3}\bar{He}$, parameter $B_{3} \propto p_{0}^{6}$)

Simulation Steps

- CR energies were selected (20, 50, 158, 500 and 2000 GeV) to probe variation of p₀ with collision energy T
- EPOS-LHC was used to simulate 50 billion p + p collisions
- Afterburner script generated d
 , t
 and H
 e
 ³ applying coalescence conditions to antinucleons (assuming all t
 decayed into ³H
 e, they were combined later)

Production Rate

Particle production rates from EPOS+coalescence afterburner

- ▶ 50 billion MC events generated, 50 \overline{He}^3 produced, 90 \overline{t} produced
- Afterburner applied for \overline{He}^4 too, not enough statistics
- Orders of magnitude more \overline{d} expected form same mechanism

Propagation

- We thank Vivian and Pierre for allowing us to use their propagation code
- Simulation is computation resource intensive process, limiting us to sample CR energy, produced antinuclei statistics not enough for detailed propagation schemes
- Available ³He cross-section spectra from p + p was scaled using the ratio of p₀'s used in the two studies (by comparing more numerous d spectra)
- Local source terms propagated to predict expected ³*He* top-of-atmosphere flux

The differences with other analytical studies possibly arise from the differences in the p_0 used in colescence

Predicted secondary ³He flux

Differences of secondary production at low energies are magnified in effect by the steeply falling cosmic ray flux as a function of energy

Conclusion

- With an event-by-event application of coalescence, we were able to look at production rates of rare antinuclei like antitritium, antihelium3
- This study specifically looks at the effect of the rising value of coalescence parameter with energy for antinuclei production
- We find that expected top-of-atmosphere flux of secondary antiheliums may be even smaller that previously expected
- This study motivates one to look for other (more exotic) sources of antinuclei in the cosmic rays

Outlook

• We aim to continue and extend the study to possibly :

- sample more cosmic ray energies
- look more carefully at methods of combining more than two nucleons
- gather more statistic for smoother spectra of rare antinuclei
- generate enough MC events to produce ${}^{4}\bar{He}$

Thank You

Backup

Inconclusive Light Antiparticles

Figure: Ratio of positron to total (above) and \bar{p} to p (below)

- Models (pulsars, SNR acceleration) have been suggested to explain the positron excess
- Antiproton excess is within uncertainty range
- Clearer signal is needed for DM (indirect) detection

Coalescence Parameter for Deuterons

Energy dependent coalescence parameter p_0 for deuteron formation

Local Source Term

$$Q_{\rm sec}^{ij}(E_A) = 4\pi n_j \int_{E_{\rm th}}^{\infty} dE_i \,\phi_i(E_i) \,\frac{d\sigma_A^{ij}}{dE_A}(E_i, E_A)$$

Calculation of local source term

Sample Scaled ${}^{3}\overline{He}$ Spectra

 ${}^{3}\bar{He}$ scaled using p_{0} ratio from \bar{d} spectra