A Study of Astrophysical Backgrounds of Antihelium Nuclei in Cosmic Rays

Amaresh Datta, Anirvan Shukla, Carina Kanitz, Philip Doetinchem

2nd Cosmic-ray Antideuteron Workshop at UCLA, March 27-29, 2019
Antinuclei in CR

Models have suggested antideuteron flux from dark matter (DM) annihilation could have orders of magnitude lower astrophysical background below ~ 1 GeV per nucleon.

Makes \bar{d} and larger antinuclei interesting probes for DM.

Figure: Predicted \bar{d} flux from Korsmeier et al. (PR D97, 103011)
AMS-02 and Antiheliums

AMS-02 measures cosmic ray particles with high precision. Reported antihelium candidates (six $^3\overline{He}$ and two $^4\overline{He}$)

Alberto Oliva presented on antinuclei on behalf of AMS-02

This leads to new challenges and questions about the production mechanisms of light nuclei, possible backgrounds from astrophysical sources and their propagation.
Antinucleons from DM annihilation can coalesce to form \bar{d} or larger antinuclei (signal to search for)

Astrophysical background: produced in interactions of CR (mostly protons) and interstellar medium (ISM - mostly hydrogen)

Coalescence production of antinuclei with mass number A and charge number Z from collision of CR species i with ISM species j:

$$
\frac{E_A}{\sigma_{ij}} \frac{d^3\sigma_A}{dk_A^3} = B_A \left(\frac{E_{\bar{p}}}{\sigma_{ij}} \frac{d^3\sigma_{\bar{p}}}{dk_{\bar{p}}^3} \right)^Z \left(\frac{E_{\bar{n}}}{\sigma_{ij}} \frac{d^3\sigma_{\bar{n}}}{dk_{\bar{n}}^3} \right)^{A-Z}
$$

where parameter $B_A \propto (p_0^3)^{A-1}$; (for \bar{d}, parameter $B_2 \propto p_0^3$)
Coalescence Parameter

- Two antinucleons coalesce to form antideuterons if in their CM frame:
 \[\Delta k = \frac{1}{2} |\vec{k}_p - \vec{k}_n| < p_0 \]

- Coalescence momentum \(p_0 \) for \(\bar{d} \) formation is energy dependent (see Diego Gomez’s talk)
 \[p_0(T) = \frac{A}{1 + \exp(B - \frac{\ln(T)}{C})} \]

- For EPOS-LHC:
 \[A = 89.6 \text{ MeV/c}, \]
 \[B = 6.6, \ C = 0.73, \ T \text{ is kinetic energy in GeV} \]

Figure: Energy dependence of \(p_0 \) for \(\bar{d} \) formation (PR D98, 023012)
Extension to Formation of Larger Antinuclei

All at the same time:

In an iterated process:

- For $^3\bar{He}$, one can consider coalescence of all three antinucleons together (each antinucleon pair satisfies condition)
- Or coalescence of two antinucleons and the coalescence of the product with a third
- Or a combination of both (for $^3\bar{He}$, parameter $B_3 \propto p_0^6$)
CR energies were selected (20, 50, 158, 500 and 2000 GeV) to probe variation of p_0 with collision energy T

EPOS-LHC was used to simulate 50 billion $p + p$ collisions

Afterburner script generated \bar{d}, \bar{t} and \bar{He}^3 applying coalescence conditions to antinucleons (assuming all \bar{t} decayed into $^3\bar{He}$, they were combined later)
Particle production rates from EPOS+coalescence afterburner

- 50 billion MC events generated, 50 $\bar{^3}\text{He}$ produced, 90 \bar{t} produced
- Afterburner applied for $\bar{^4}\text{He}$ too, not enough statistics
- Orders of magnitude more \bar{d} expected from same mechanism
We thank Vivian and Pierre for allowing us to use their propagation code.

Simulation is a computationally intensive process, limiting us to sampling CR energy, producing antinuclei statistics not enough for detailed propagation schemes.

Available $^3\overline{He}$ cross-section spectra from $p + p$ were scaled using the ratio of p_0's used in the two studies (by comparing more numerous \overline{d} spectra).

Local source terms propagated to predict expected $^3\overline{He}$ top-of-atmosphere flux.
The differences with other analytical studies possibly arise from the differences in the p_0 used in coalescence.
Differences of secondary production at low energies are magnified in effect by the steeply falling cosmic ray flux as a function of energy.
Conclusion

- With an event-by-event application of coalescence, we were able to look at production rates of rare antinuclei like antitritium, antihelium3
- This study specifically looks at the effect of the rising value of coalescence parameter with energy for antinuclei production
- We find that expected top-of-atmosphere flux of secondary antiheliums may be even smaller that previously expected
- This study motivates one to look for other (more exotic) sources of antinuclei in the cosmic rays
Outlook

- We aim to continue and extend the study to possibly:
 - sample more cosmic ray energies
 - look more carefully at methods of combining more than two nucleons
 - gather more statistic for smoother spectra of rare antinuclei
 - generate enough MC events to produce $^4\overline{He}$
Thank You
Backup
Inconclusive Light Antiparticles

- Models (pulsars, SNR acceleration) have been suggested to explain the positron excess
- Antiproton excess is within uncertainty range
- Clearer signal is needed for DM (indirect) detection

Figure: Ratio of positron to total (above) and \bar{p} to p (below)
Coalescence Parameter for Deuterons

Energy dependent coalescence parameter p_0 for deuteron formation
Local Source Term

\[Q_{\text{sec}}^{ij}(E_A) = 4\pi n_j \int_{E_{\text{th}}}^{\infty} dE_i \phi_i(E_i) \frac{d\sigma_A^{ij}}{dE_A}(E_i, E_A) \]

Calculation of local source term
Sample Scaled $^3\bar{He}$ Spectra

CR $T_p = 5.01\times10^2$ GeV

$^3\bar{He}$ scaled using p_0 ratio from \bar{d} spectra