

(Anti-)Nuclei production at the LHC with ALICE

Ramona Lea

Physics Department, University and INFN Trieste

For the ALICE Collaboration

Light nuclei in heavy-ion collisions

- The study of the production of light (anti-)nuclei in high energy collisions is very important:
 - The production mechanism is not well understood
 - > How/when do they form?
 - "early" at chemical freeze-out (thermal production)
 - or "late" at kinetic freeze-out (coalescence)?
 - > Do they suffer for dissociation by rescattering?
 - Low binding energy (few MeV) "Snowballs in hell": nuclei formation is very sensitive to chemical freezeout conditions and to the dynamics of the emitting source
 - Baseline for searches for exotic bound states
 - Light nuclei measurements in high energy physics can be used to estimate the background of secondary anti-nuclei in dark matter searches

Particle production at LHC

- Particle production in pp, p-Pb, and Pb-Pb collisions shows an equal abundance of <u>matter</u> and <u>anti-matter</u> in the central rapidity region
- A large number of particles is produced: $dN_{ch}/d\eta \approx 2000$ (central Pb-Pb collisions)

Antideuteron 2019- Ramona Lea

2 /26

- Particle production in pp, p-Pb, and Pb-Pb collisions shows an equal abundance of matter and anti-matter in the central rapidity
- A large number of particles is produced: $dN_{cb}/d\eta \approx 2000$ (central Pb-Pb collisions)

Phys. Rev. Lett. 109, 252301

29/03/2019

Particle production at LHC

 \approx 80% of all charged particles are pions \approx 5% of all charged particles are protons

29/03/2019

Antideuteron 2019- Ramona Lea

Particle production at LHC

- Particle production in pp, p-Pb, and Pb-Pb collisions shows an equal abundance of <u>matter</u> and <u>anti-matter</u> in the central rapidity region
- A large number of particles is produced: $dN_{ch}/d\eta \approx 2000$ (central Pb-Pb collisions)

≈ 80% of all charged particles are pions
 ≈ 5% of all charged particles are protons

. . .

Particle production at LHC

- Particle production in pp, p-Pb, and Pb-Pb collisions shows an equal abundance of <u>matter</u> and <u>anti-matter</u> in the central rapidity region
- A large number of particles is produced: $dN_{ch}/d\eta \approx 2000$ (central Pb-Pb collisions)
 - ≈ 80% of all charged particles are pions≈ 5% of all charged particles are protons
 - Even in heavy ion collisions, light (anti-)nuclei are rarely produced:
 - \succ (Anti-)nuclei up to A = 4 are within reach
 - For each additional nucleon the production yield at LHC decreases by a factor of about 350!

2 /26

Experimental apparatus

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade).

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

29/03/2019

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade).

Inner Tracking System (ITS) :

- Primary vertex
- Tracking
- Particle identification via dE/dx

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

29/03/2019

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade).

Primary vertex

Global tracking

Particle identification via dE/dx

Particle identification via dE/dx

Tracking

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade).

Tracking
Particle identification via dE/dx

Inner Tracking System (ITS) :Primary vertex

Time Projection Chamber (TPC):

- Global tracking
- Particle identification via dE/dx

Time Of Flight (TOF):

 Particle identification via velocity measurement

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade).

Primary vertex Tracking Particle identification via dE/dx Time Projection Chamber (TPC): Global tracking

Inner Tracking System (ITS) :

Particle identification via dE/dx

Time Of Flight (TOF):

 Particle identification via velocity measurement

High Momentum PID (HMPID):

 particle identification via ring imaging Cherenkov

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V⁰, cascade).

Inner Tracking System (ITS) :Primary vertex

Time Projection Chamber (TPC):

Global tracking

measurement

High Momentum PID (HMPID):

centrality, multiplicity classes

Particle identification via dE/dx

Particle identification via dE/dx

Particle identification via velocity

VO (A-C): Trigger, beam-gas event rejection,

particle identification via ring imaging

3 /26

Tracking

Time Of Flight (TOF):

Cherenkov

Centrality of the collisions

Centrality = degree of overlap of the 2 colliding nuclei

Central collisions:

- small impact parameter b
- high number of participant nucleons → high multiplicity

Peripheral collisions:

- large impact parameter b
- low number of participant nucleons \rightarrow low multiplicity

Centrality connected to observables via Glauber model

Production of light (anti-)nuclei

Identification of nuclei

Low momenta: specific energy loss in the TPC

- Nuclei identification via d*E*/d*x* measurement in the TPC:
 - \rightarrow dE/dx resolution in central Pb-Pb collisions: around 6.5%
 - > Excellent separation of (anti-)nuclei from other particles over a wide range of momenta

5 /26

Identification of nuclei

Higher momenta: time-of-flight measurement in the TOF

- Velocity measurement with the Time Of Flight detector is used to evaluate the m² distribution
 - > Excellent TOF performance: $\sigma_{TOF} \approx 85$ ps in Pb-Pb collisions

Identification of nuclei

Higher momenta: Cherenkov angle determination in the HMPID

• The particle identification in the HMPID detector is based on the measurement of the Cherenkov radiation ($\theta_{Cherenkov}$) which allows us to determine the square mass of the particle by the following formula:

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

29/03/2019

Deuteron p_{τ} spectra in pp collisions

C. Tsallis, J. Stat. Phys. 52, 479 (1988) 980 STAR Collaboration, Phys. Rev. C75, 064901 981 (2007)

8 /26

Deuteron p_{T} spectra in p-Pb collisions

Spectra are extracted in several multiplicity bins and fitted with blast-wave function for the extraction of yields

$$\frac{1}{p_{\rm T}}\frac{dN}{dp_{\rm T}} \propto \int_0^R r \, dr \, m_{\rm T} I_0 \left(\frac{p_{\rm T} \sinh \rho}{T_{\rm kin}}\right) K_1 \left(\frac{m_{\rm T} \cosh \rho}{T_{\rm kin}}\right)$$

E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993)

Deuteron p_{T} spectra in Pb-Pb collisions

ALICE

ALICE-PUBLIC-2017-006

Spectra are extracted in several centrality bins and fitted with blast-wave function for the extraction of yields

29/03/2019

t and ³He p_{T} spectra in pp collisions

29/03/2019

³He p_{τ} spectra in p-Pb collisions

29/03/2019

12/26

³He p_{τ} spectra in Pb-Pb collisions

ALICE-PUBLIC-2017-006

Spectra are extracted in three centrality bins and fitted with blast-wave function for the extraction of yields

29/03/2019

Anti-Matter production

29/03/2019

Antideuteron 2019- Ramona Lea

14/26

Anti-Matter production

- Anti-nuclei/nuclei ratios are consistent with unity (similar to other light particle species) in the measured p_{τ} -interval
- Ratios are constant as a function of p_{T} and centrality

14/26

⁴He production in Pb-Pb collisions

- Heaviest (anti-)nucleus observed (16 candidates in Pb-Pb at 5.02 TeV)
- Pre-selection using dE/dx measured in TPC
- $\pm 3\sigma$ from the expected value for ⁴He
- Signal extraction from mass squared distribution obtained using TOF

Nuclei production yield

Exponential decrease of the nuclei yield with the mass number

Penalty factor for adding one baryon:

- ~350 in Pb-Pb collisions
- ~600 in p-Pb collisions
- ~1000 in pp collisions

Thermal model

Nature 561 (2018) no.7723, 321-330 arXiv:1710.09425 [nucl-th]

Statistical hadronization model: thermal emission from equilibrated source

Particle abundances fixed at chemical freeze-out

$$N_i = \frac{g_i V}{2\pi^2} \int_0^{+\infty} \frac{p^2 dp}{\exp\left[-\left(\frac{E-\mu_B}{T_{\rm chem}}\right)\right] \pm 1}$$

• Primordial yields modified by hadron decays:

- Contribution obtained from calculations based on known hadron spectrum
- Excellent agreement with data with only 2 free parameters: $\rm T_{\rm chem}$, V

Thermal model fit to ALICE data

- The p_{T} -integrated yields and ratios can be interpreted in terms of statistical (thermal) models
- Particle yields of light flavor hadrons (including nuclei) are described with a common chemical freeze-out temperature $(T_{chem} = 156 \pm 2 \text{ MeV})$

K* not included in the fit

4 <mark>4</mark> 4

[×]_AH+ [×]_AH

BR = 25%

ALICE Preliminary

0 ₀ 0

Pb-Pb $\sqrt{s}_{NN} = 2.76 \text{ TeV}, 0-10\%$

4 **4 4**

......

³He

• If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus can be formed

- If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space

- If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- Assuming that p an n have the same mass and have the same p_{T} spectra, the yield of any nucleus can be determined as

$$E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

- If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus • can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- Assuming that p an n have the same mass and have the same p_{τ} spectra, the yield of any nucleus can be determined as

$$E_{A} \frac{d^{3} N_{A}}{d p_{A}^{3}} = B_{A} \left(E_{p} \frac{d^{3} N_{p}}{d p_{p}^{3}} \right)^{A} \qquad \qquad B_{A} = \left(\frac{4\pi}{3} p_{0}^{3} \right)^{(A-1)} \frac{1}{A!} \frac{M}{m^{A}}$$

- If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- Assuming that p an n have the same mass and have the same p_{T} spectra, the yield of any nucleus can be determined as $d^{3}N = \left(-\frac{d^{3}N}{2} \right)^{A}$

- If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus can be formed
- Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the momentum space
- Assuming that p an n have the same mass and have the same p_T spectra, the yield of any nucleus can be determined as

Coalescence parameter B_{γ}

Simple coalescence model

- Flat B_2 vs p_T and no dependence on
 - multiplicity/centrality
 - Observed in "small systems": pp, p-Pb and peripheral Pb-Pb

Coalescence parameter B_{γ}

Coalescence parameter B_{2}

F.Bellini and A. P.Kalweit, arXiv:1807.05894 [hep-ph]. R. Scheibl, U. Heinz, PRC 59 (1999) 1585-1602 K. Blum et al., PRD 96 (2017) 103021 Simple coalescence model

- Flat B_2 vs p_T and no dependence on
 - multiplicity/centrality
 - Observed in "small systems": pp, p-Pb and peripheral Pb-Pb

More elaborate coalescence model takes into account the volume of the source:

$$B_2 = \frac{3\pi^{3/2} \langle C_d \rangle}{2m_T R^3(m_T)}$$

• B_2 scales like HBT radii (R)

- decrease with centrality in Pb-Pb is explained as an increase in the source volume
- ▷ increase with p_{τ} in central Pb-Pb reflects the k_{τ} -dependence of the homogeneity volume (i.e. volume with similar flow properties) in HBT
 - ✔ Qualitative agreement in central Pb-Pb collisions

29/03/2019

Coalescence parameter B_{2}

Simple coalescence model

- Flat B_2 vs p_T and no dependence on
 - multiplicity/centrality
 - Observed in "small systems": pp, p-Pb and peripheral Pb-Pb

More elaborate coalescence model takes into account the volume of the source:

$$B_2 = \frac{3\pi^{3/2} \langle C_d \rangle}{2m_T R^3(m_T)}$$

• B_2 scales like HBT radii (R)

- decrease with centrality in Pb-Pb is explained as an increase in the source volume
- > increase with p_{τ} in central Pb-Pb reflects the K_{τ}dependence of the homogeneity volume (i.e. volume with similar flow properties) in HBT

Qualitative agreement in central Pb-Pb collisions

Coalescence parameter B_{3}

 B_3 of $(\bar{t})t$ and $({}^{3}He){}^{3}He$ measured in pp and Pb-Pb collisions First ever measurements of the B_3 of \bar{t} and ${}^{3}He$ in pp collisions Increasing trend with p_{τ} and centrality observed in Pb-Pb collision

Light nuclei production: Deuteron to proton ratio

- d/p increases with multiplicity going from pp to peripheral Pb-Pb : consistent with simple coalescence (d \propto p²)
- No significant centrality dependence in Pb-Pb : consistent with thermal model (yield fixed by T_{chem})
 - Smooth transition: is there a single particle production mechanism?

Outlook – Run 2 data

- pp collisions at Vs = 13 TeV: new results are expected soon for light (anti-)nuclei production
- p-Pb collisions at $Vs_{_{NN}} = 5.02$ TeV and $Vs_{_{NN}} = 8$ TeV collected at the end of 2016 \rightarrow will provide new and more precise measurements
- Pb-Pb run at the end of 2018: expected a significant increase of statistics \rightarrow more precise measurements

29/03/2019

Outlook – ALICE upgrade

After the Long Shutdown 2 ALICE will be able to collect data with better performance at higher luminosity

- Expected integrated luminosity: ~10 nb^{-1} (~ 8x10⁹ collisions in the 0-10% centrality class)
- New ITS: less material budget and more precise tracking for the identification of hyper-nuclei
- All the physics done for A = 2 and A = 3 (hyper-)nuclei will be possible also for A = 4

Conclusions

- Study of (anti-) nuclei is an important tool to study hadronization for multi-baryon systems
- Thermal model successfully describes nuclei yields
 - Survival of loosely bound states at T_{chem}>> binding energy is not understood yet
- B_A reveals system size dependence of hadronization
- d/p ratio:
 - Increasing trend (qualitatively) described by coalescence
 - Plateau consistent with thermal model value
- New and more precise data are expected from the LHC on the presented topics in the next years. These will provide stricter constraints to the theoretical models

Backup

"More elaborate" coalescence model

- For "large" systems, the size of the emitting volume (V_{eff}) has to be taken into account:
 - the larger the distance between the protons and neutrons which are created in the collision, the less likely it is that they coalesce
- The source can be parameterized as rapidly expanding under radial flow (hydro)
- The coalescence process is governed by the same correlation volume ("length of homogeneity") which can be extracted from HBT interferometry
- The source radius enters in the $B_{\rm A}$ and in the quantummechanical correction $\langle C_{\rm A} \rangle$ factor that accounts for the size of the object being produced (d, ³He, ...)

$$B_A = \frac{2J_A + 1}{2^A} A \left\langle \mathcal{C}_A \right\rangle \frac{V_{\text{eff}}(A, M_t)}{V_{\text{eff}}(1, m_t)} \left(\frac{(2\pi)^3}{m_t V_{\text{eff}}(1, m_t)} \right)^{A-1}$$

R. Scheibl, U. Heinz, PRC 59 (1999) 1585-1602 K. Blum et al., PRD 96 (2017) 103021

F.Bellini and A. P.Kalweit, arXiv:1807.05894 [hep-ph].

Good description of the data

29/03/2019

Identification of nuclei: secondaries

The measurement of nuclei is strongly affected by background from knock-out from material

Identification of nuclei: secondaries

The measurement of nuclei is strongly affected by background from knock-out from material

 \rightarrow Rejection is possible via fitting the DCA_{xy} distributions with templates

Identification of nuclei: secondaries

ALIC

The measurement of nuclei is strongly affected by background from knock-out from material

 \rightarrow Rejection is possible via fitting the DCA_{xy} distributions with templates

Not relevant for anti-nuclei. However, larger systematic uncertainty from hadronic interaction cross section

Precise mass measurement

- The precise measurement of the mass difference between nuclei and their anti-counterparts allows to probe any difference in the interaction between nucleons and anti-nucleons.
- Looking at the mass difference between nuclei and their anti-nuclei it is possible to test the **CPT invariance** of the residual **QCD "nuclear force"**

1.5

2

2.5

 $(m/z)^2_{TOF}$ (GeV²/c⁴)

• Masses and binding energies of nuclei and antinuclei are compatible within uncertainties

45

 $(m/z)^2_{TOF}$ (GeV²/c⁴)

3.5

ALI-PUB-103361

Measurement confirms the CPT invariance for light nuclei

Precise mass measurement

- The precise measurement of the mass difference between nuclei and their anti-counterparts allows to probe any difference in the interaction between incleons and anti-nucleons.
- Looking at the mass difference between nuclei and their anti-nuclei it is possible to test the CPT invariance of the residual QCD "nuclear force"

ALICE Collaboration: Nature Phys. 11, 811 (2015)

• Masses and binding energies of nuclei and antinuclei are compatible within uncertainties

ALI-PUB-103393

Measurement confirms the CPT invariance for light nuclei

Anti-nuclei in pp collisions

Searches for dark matter WIMP candidate decaying in \overline{d} and ${}^{3}\overline{\text{He}}$ require estimate of expected secondary astrophysical background (secondary anti-nuclei produced in cosmic ray interactions)

Precise measurement of coalescence parameters at the LHC can provide constraints for models

ALICE Collaboration, arXiv:1709.08522

³He

σ

33/26

Anti-nuclei in pp collisions

Searches for dark matter WIMP candidate decaying in \overline{d} and ${}^{3}\overline{\text{He}}$ require estimate of expected secondary astrophysical background (secondary anti-nuclei produced in cosmic ray interactions)

Precise measurement of coalescence parameters at the LHC can provide constraints for models

ALICE Collaboration, arXiv:1709.08522

29/03/2019

Antideuteron 2019- Ramona Lea

Poisson

AMS02

probability for detecting N \geq 1, 2, 3, 4 $^{3}\overline{\text{He}}$ events in

a 5-yr analysis of

 B_2' of anti-deuterons as a function of the transverse momentum per nucleon p_T/A compared with the experimental data for B_2 measured in inelastic pp collisions at $\sqrt{s} = 7$ TeV

The size of the emitting volume (V_{eff}) has to be taken into account: the larger the distance between the protons and neutrons which are created in the collision, the less likely is that they coalesce

In detail, it turns out [1] that the coalescence process is governed by the same "length of homogeneity in the source" which can be extracted from two particle Bose-Einstein correlation (HanburyBrown – Twiss (HBT) interferometry [2]): $\rightarrow B_2 \simeq 1/V_{eff}$

(small fireball)

$$B_2 = \frac{3 \pi^{3/2} \langle C_d \rangle}{2 m_t \Re_T^2(m_t) \Re_p^2(m_t)} e^{2(m_t - m) \left(\frac{1}{T^* p} - \frac{1}{T^* d}\right)}$$

The strong decrease of B₂ with centrality in Pb-Pb collisions can be naturally explained as an increase in the emitting volume: particle densities are relevant and not absolute multiplicities

> [1]R. Scheibl and U. Heinz, Phys.Rev. C59, 1585 (1999) [2] A review can be found in : U. Heinz, Nucl. Phys. A 610, 264c (1996)

(large fireball)

Centrality of the collisions: p-Pb and pp

Multiplicity estimator: slices in VZERO-A (VOA) amplitude

ALI-PERF-51387

Central collision

Peripheral collision

Correlation between impact parameter and multiplicity is not as straight-forward as in Pb-Pb

29/03/2019