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The cosmic-ray spectrum
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The classical questions in CR physics

Gabici+, arXiv tomorrow(?)

contribute to the CR flux in

different energy ranges? '
%

» Which classes of sources ||||||""“||| lle ~ 0.4 eV/cm?
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» Which are the relevant processes
responsible for CR confinement in

the Galaxy? :_I
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» Are CR nuclei and electrons

accelerated by the same sources? from 2011-05-15 to 2017-04-13

» What is the origin of CR I L Ly
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» What is the role of CRs in the

ISM? (e.g., for star formation) Figure: The TOA proton flux as
measured by AMSQ2 at different times.




LiBeB as cosmic-ray clocks
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» If we assume that acceleration takes place in the average
interstellar medium then this component must be produced during
propagation (from that the term secondary).
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The grammage pillar
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Figure: Secondary-over-primary
ratios from AMSQ2.

» The escape time is energy
dependent and (roughly) scales
like R7Y/3




Galactic cosmic-ray factories

35 from Caprioli JCAP 2011

T

» Galactic SN Remnants provide the right energetics (~ 10% efficiency)

» Diffusive shock acceleration (DSA) predicts g o« E~2 for strong
shocks, indipendent on microphysics

» maybe softer because of non-linear effects

» Pure rigidity dependent acceleration (universality) with a single
power-law in momentum.




The interstellar
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Electron-density fluctuations in the ISM
[Armstrong+, ApJ 1995 - Chepurnov & Lazarian,

ApJ 2010 - Lee & Lee, Nature Astr.

2019]

Turbulence is stirred by Supernovae
at a typical scale L~ 10— 100 pc

Fluctuations of velocity and
magnetic field are Alfvénic

They have a Kolmogorov a ~ —5/3
spectrum (density is a passive

tracer so it has the same spectrum:

Sne ~ 6B?):

_(6B)(k) _2nB [ k
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where ko = L=! and the level of
turbulence is

oo
ng = dk W(k) ~ 0.1+0.01
ko
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Charged particle in a turbulent field
Jokipii, ApJ 1966

» The turbulent field produces a small fluctuation with respect to the
regular component

(6B?)(k) < B§ for k> ko

» The particle interacts resonantly with the waves, when the condition
ket ~ ri(p) is met

» The diffusion coefficient becomes:

vr 1 3 x 10%7 2—a
Dair(p) = ~ ( P )

? Kres W(kres) nB GeV/c

> A~ kpc for keesW(kees) ~ 1078 at scales ~ A.U.

» that is just another example of the problem: little things affect big
things
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The CR transport equation in the halo model
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> Spatial diffusion: V-J




The CR transport

equation in the halo model
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» Spatial diffusion: v-J
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» Advection by Galactic winds/outflows: u = uy + va ~ va
C. Evoli

after AMSO2




The CR transport equation in the halo model

0 Of,, 0f, dupOf, 1 0 for
T Oz DZ_ 9, d-13 = fo| == ba T
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» Spatial diffusion: v.J

» Advection by Galactic winds/outflows: u = uy + va ~ vp

» Source term proportional to Galactic SN profile




The CR transport equation in the halo model

0 of, 0f, dupOf, 1 0

D, =% )+u 22— gen
0z

» Spatial diffusion: v.J

» Advection by Galactic winds/outflows: u = uy + va ~ vp

» Source term proportional to Galactic SN profile

>

Energy losses: ionization, Bremsstrahlung, IC, Synchrotron,

after AMS@2



The CR transport equation in the halo model
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Spatial diffusion: v.J
Advection by Galactic winds/outflows: u = uy + va ~ vy
Source term proportional to Galactic SN profile

Energy losses: ionization, Bremsstrahlung, IC, Synchrotron,

vy VY VY VvVYYy

Production/destruction of nuclei due to inelastic scattering (or decay)
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Predictions of the standard picture

For a primary CR species (e.g., H, C, 0) at high energy we can ignore energy
gain/losses, and the transport equation can be simplified as:

0 0 of
5{0 = QP + o [Dﬂ
V4

D% = constant — f(z) =fy (1 — ﬁ)

For z # 0 one has:

where we used the definition of a halo: f(z=+H)=0.

The typical solution gives (assuming injection Q ox p~7):
Qo(p) H e~
fip) = 2B H s
2Aq4 D(p)

For a secondary (e.g., Li, Be, B) the source term is proportional to the primary
density:

B 5
~ firsmcocogNe = — ~ —p~
Qs 1smcoc—aNc ¢~ Do P

where we use Arsy = naiskh/H.
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Unprecedented data precision: The rigidity break
Adriani+, Science 2011 - Aguilar+, PRLs 2013 and so on
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The break is a propagation matter
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» We conlude from the data that the observed spectral hardening at
~ 300 GV is due to a change of regime in particle diffusion

» Similar conclusion from a Bayesian analysis in [Genolini+, PRL 2018]
» Physical mechanisms able to explain the break are presented in [Blasi,

Amato & Serpico, PRL 2012 - Tomassetti, ApJL 752 (2012) 13]
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Fitting the nuclei heavier than He
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» Modelling D with a smooth break:
(R/GV)®

D(R) = BDg

[1+ (R/Rp)AO/5]s’
> we find § = 0.64, Do/H = 0.25 x 10%® cm/s?, A§ =02, u=7 km/s and v = 4.26

» B/C and C/0 as grammage indicators are severely limited by our knowledge of
cross-sections.




The problem with cross-sections: need for new measurements
Genolini+, PRC 2018 - Reinert & Winkler, JCAP 2018 - Evoli+, JCAP 2018
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Figure: Cross-sections for Boron prodution by CNO spallation on Hydrogen
target as a function of kinetic energy per nucleon. Data are taken from
GALPROP and from EXFOR database. o ! = = =




The injection drama
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» H is softer than nuclei, while He is harder

» At odds with what one would expect in the case of pure rigidity
dependent acceleration [Serpico, ICRC 2015].

» Problematic even for models of the difference between H and He
injection based on the different A/Z at shocks [Hanusch+, Apj 20191.




Grammage at the source
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To provide a better fit of
high-energy B/C we account for
an additional contribution to
the grammage traversed by CRs
The grammage due to confinement
inside a SNR can be easily
estimated as [Aloisio, Blasi &
Serpico, A&A 2015]

Xsnr ~ 0.2 g;/cm72
It is important at high-energy

since the harder spectrum

B/C can constrain
X; <0.7 gr/cm?

However the injection problem
for He gets worse!

GCRs after AMS@2



A new scenario for cosmic-ray propagation in the halo

» By solving the transport equation we obtain a featureless (at
least up to the knee) propagated spectrum for each primary
species, differently thant wath is observed.

» This result remains true even in more sophisticated approach
as GALPROP or DRAGON

» What is missing in our physical picture?

C. Evoli
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The halo size H

> Assuming f(z = H) =0 reflects the requirement of lack of diffusion
(infinite diffusion coefficient)

» May be because B — 0, or because turbulence vanishes (in both cases
D cannot be spatially constant!)

» Vanishing turbulence may reflect the lack of sources

» Can be H dependent on p? (remember B/C ~ D/H!)

» What is the physical meaning of H?




The radio halo in external galaxies
Credit: MPIfR Bonn

NGC5775 835GHz.
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The ~v-halo in our Galaxy
Tibaldo et al., 2015, ApJ
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» Using high-velocity clouds one can measure the emissivity per atom as
a function of z (proportional to f)

» Indication of a halo with H ~ few kpc




Non-linear cosmic ray transport
Skilling71, Wentzel74

» The net effect of spatial diffusion is to reduce the momentum of the particles
forcing them, eventually, to move at the same speed as the waves ~ vy

» If CR stream faster than the waves, the net effect of diffusion is to make
waves grow and make CR diffusive motion slow down: this process is known as
self-generation of waves (notice that self-generated waves are k ~ r;)

» Waves are amplified by CRs through streaming instability:

B 1672 Va 4 Of
for = 3 W82 {V(p)p 82}

and are damped by wave-wave interactions that lead the development of a
turbulent cascade (NLLD):

ML = (2¢) ™3 2 kva(kW)/2

» What is the typical scale/energy up to which self-generated turbulence is
dominant?

C. Evoli
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Non-linear cosmic ray transport
Blasi, Amato & Serpico, PRL, 2012

Transition occurs at scale where external turbulence (e.g., from SNe) equals in
energy density the self-generated turbulence

Wext (ktr) = WCR(ktr)

where WcR corresponds to 'cr = 'NLLD
Assumptions:

» Quasi-linear theory applies

» The external turbulence has a Kolmogorov spectrum
» Main source of damping is non-linear damping
>

Diffusion in external turbulence explains high-energy flux with SNR efficiency
of e~ 10%

5 H_1/3 3/2(vp—4)

Ré10H3 (2vp—5)/2(vp—4
E, = 228Gev [ —%10° 3 B2 =8)/2(%—4)
‘ €0.1E51R30 0.4
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The turbulence evolution equation
Eilek, ApJ 1979

ow 0 ow 0
ot Ok

Dkk(?T + E (VAW) + FCRW + Q(k)

» Diffusion in k-space damping: Dy = ck|vA|/<7/2W1/2




The turbulence evolution equation
Eilek, ApJ 1979

+ L (W) 4 TerW + Q(K)

ow 0 ow
0z

ot~ ok |P*ar

» Diffusion in k-space damping: Dk :ck|vA|k7/2W1/2

» Advection of the Alfvén waves

C. Evoli
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The turbulence evolution equation
Eilek, ApJ 1979

9%~ ok DkkW + — (vaW) + Tcr W + Q(k)

ow 0 ow 0
0z

» Diffusion in k-space damping: Dk :ck|vA|k7/2W1/2

» Advection of the Alfvén waves

> Waves growth due to cosmic-ray streaming: [cr o Of/0z




The turbulence evolution equation
Eilek, ApJ 1979

It a Dkkm +§(VAW)—|—FCRW—|— Q(k)

ow 0 [ 8VV] 0
» Diffusion in k-space damping: Dk :ck|vA|k7/2W1/2

» Advection of the Alfvén waves

» Waves growth due to cosmic-ray streaming: [cr o Of /0z

» External (e.g., SNe) source term Q ~ §(z)d(k — ko)




The turbulence evolution equation
Eilek, ApJ 1979

9%~ ok DkkW +§(VAW)+FCRW+Q(/{)

ow 0 { 8VV] 0
Diffusion in k-space damping: Dik = ck|vA|k7/2 wt/?
Advection of the Alfvén waves

Waves growth due to cosmic-ray streaming: [cmr o Of /0z

External (e.g., SNe) source term Q ~ 6(z)d(k — ko)

vV Vv VY

In the absence of the instability, it returns a kolmogorov spectrum:
W(k) ~ k=5/3




Wave advection — the turbulent halo
Evoli, Blasi, Morlino & Aloisio, 2018, PRL
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Non-linear cosmic ray transport: diffusion coefficient
Evoli, Blasi, Morlino & Aloisio, 2018, PRL
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Figure: Turbulence spectrum without (dotted) and with (solid) CR
self-generated waves at different distance from the galactic plane.




Non-linear cosmic ray transport: a global picture
Evoli, Blasi, Morlino & Aloisio, 2018, PRL
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Conclusions

» Recent findings by PAMELA and AMS-02 (breaks in the spectra of
primaries, B/C a la Kolmogorov, flat anti-protons, rising positron
fraction) are challenging the standard scenario of CR propagation.

» Non-linearities might play an essential role for propagation (as they
do for acceleration). They allow to reproduce local observables
(primary spectra) without ad hoc breaks.

» We present a non-linear model in which SNRs inject: a) turbulence at
a given scale with efficiency ey ~ 107* and b) cosmic-rays with a
single power-law and ecr ~ 107 1. The turbulent halo and the change
of slope at ~300 GV are obtained self-consistently.

» As a bonus, these models enable us a deeper understanding of the
interplay between CR, magnetic turbulence and ISM in our Galaxy.
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The road ahead..
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