Searching for Dark Photon Dark Matter with Cosmic-Ray Antideuterons

Weishuang Linda Xu, with Lisa Randall

Harvard University AntiDeuteron 2019, UCLA

March 27, 2019

Weishuang Linda Xu (Harvard University)

Dark Photon Dark Matter with Antideuterons 1 / 14

Agenda

- Point out a class of dark matter models indirect detection is optimized to search for
- Present detection prospects of an example model with ongoing & future antideuteron experiments

Thus far, dark matter has evaded detection

- Thus far, dark matter has evaded detection
- Thermal relic "WIMP Miracle" DM remains theoretically compelling

- Thus far, dark matter has evaded detection
- Thermal relic "WIMP Miracle" DM remains theoretically compelling
- ...but harder and harder to realize

Weishuang Linda Xu (Harvard University)

Dark Photon Dark Matter with Antideuterons 3 / 14

- Thus far, dark matter has evaded detection
- Thermal relic "WIMP Miracle" DM remains theoretically compelling
- ...but harder and harder to realize
- If DM is a thermal relic, it has to go somewhere

- Thus far, dark matter has evaded detection
- Thermal relic "WIMP Miracle" DM remains theoretically compelling
- ...but harder and harder to realize
- If DM is a thermal relic, it has to go somewhere
 - Radiation
 - Matter

- Thus far, dark matter has evaded detection
- Thermal relic "WIMP Miracle" DM remains theoretically compelling
- ...but harder and harder to realize
- If DM is a thermal relic, it has to go somewhere
 - ► Radiation → Neff (Cosmology)
 - Matter

- Thus far, dark matter has evaded detection
- Thermal relic "WIMP Miracle" DM remains theoretically compelling
- ...but harder and harder to realize
- If DM is a thermal relic, it has to go somewhere
 - ▶ Radiation → Neff (Cosmology)
 - Matter \rightarrow SM (Local detection)

Hidden Sector Dark Matter

If annihilated DM ends up in the SM, we should be able to find it!

Direct detection, Indirect detection, Collider searches

Collider Search

Hidden Sector Dark Matter

If annihilated DM ends up in the SM, we should be able to find it!

- Direct detection, Indirect detection, Collider searches
- Worst-case scenario:
 - dark matter is hidden sector
 - mixing between dark and light sectors is extremely small

Hidden Sector Dark Matter

If annihilated DM ends up in the SM, we should be able to find it!

- Direct detection, Indirect detection, Collider searches
- Worst-case scenario:
 - dark matter is hidden sector
 - mixing between dark and light sectors is extremely small
- Indirect detection is uniquely poised for these searches

New players: Fermion dark matter χ, dark U(1) with massive gauge boson A'

$$\mathcal{L} \ni -rac{1}{4} F_{\mu
u}^{\prime} F^{\prime\mu
u} - rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{\epsilon}{2} F_{\mu
u}^{\prime} F^{\mu
u} - g ar{\chi} \gamma^{\mu} A_{\mu}^{\prime} \chi - e ar{\psi} \gamma^{\mu} A_{\mu} \psi$$

New players: Fermion dark matter χ, dark U(1) with massive gauge boson A'

$$\mathcal{L} \ni -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} - g \bar{\chi} \gamma^{\mu} A'_{\mu} \chi - e \bar{\psi} \gamma^{\mu} A_{\mu} \psi$$

► If there is an additional U(1) gauge boson, it will mix with the photon (Holdom, 1986)

New players: Fermion dark matter χ, dark U(1) with massive gauge boson A'

$$\mathcal{L} \ni -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\epsilon}{2} F'_{\mu\nu} F^{\mu\nu} - g \bar{\chi} \gamma^{\mu} A'_{\mu} \chi - e \bar{\psi} \gamma^{\mu} A_{\mu} \psi$$

- ► If there is an additional U(1) gauge boson, it will mix with the photon (Holdom, 1986)
- Effective interaction

$$\mathcal{L} \ni -\epsilon e \bar{\psi} \gamma^{\mu} \mathcal{A}'_{\mu} \psi$$

• Direct detection and collider signals are suppressed by ϵ^2

 \blacktriangleright Direct detection and collider signals are suppressed by ϵ^2 However...

- ▶ If $m_{\chi} > m_{A'}$, annihilation $\bar{\chi}\chi \to A'A'$ is kinematically allowed
- A' propagates and decays to $q\bar{q}$ with $au \sim (\epsilon^2 e^2 m_{A'})^{-1}$

• Direct detection and collider signals are suppressed by ϵ^2 However...

- ▶ If $m_{\chi} > m_{A'}$, annihilation $\bar{\chi}\chi \to A'A'$ is kinematically allowed
- A' propagates and decays to q ar q with $au \sim (\epsilon^2 e^2 m_{A'})^{-1}$
- ► Indirect detection is insensitive to *ϵ*!

• Direct detection and collider signals are suppressed by ϵ^2 However...

- ▶ If $m_{\chi} > m_{A'}$, annihilation $\bar{\chi}\chi \to A'A'$ is kinematically allowed
- A' propagates and decays to q ar q with $au \sim (\epsilon^2 e^2 m_{A'})^{-1}$
- Indirect detection is insensitive to $\epsilon!$

If DPDM is thermal relic but ϵ is small, direct detection/colliders* will not be able to find it. Indirect detection will.

Anti-Deuteron Prospects

Benchmark model: $m_{\chi} = 50$ GeV, $m_{A'} = 30$ GeV, $\sigma_{ann} = 1$ pb

Anti-Deuteron Prospects

Benchmark model: $m_{\chi} = 50$ GeV, $m_{A'} = 30$ GeV, $\sigma_{ann} = 1$ pb

Target Experiments: GAPS, AMS-02

$$\begin{split} \Phi_{\bar{d}} &= 2 \times 10^{-6} \; (\text{m}^2 \; \text{s sr GeV}/\text{n})^{-1} & 0.05 \lesssim \mathcal{T} \lesssim 0.25 \; (\text{GeV}/\text{n})^{-1} \\ \Phi_{\bar{d}} &= 2 \times 10^{-6} \; (\text{m}^2 \; \text{s sr GeV}/\text{n})^{-1} & 0.2 \lesssim \mathcal{T} \lesssim 0.8 \; (\text{GeV}/\text{n})^{-1} \\ \Phi_{\bar{d}} &= 1.4 \times 10^{-6} \; (\text{m}^2 \; \text{s sr GeV}/\text{n})^{-1} & 2.2 \lesssim \mathcal{T} \lesssim 4.4 \; (\text{GeV}/\text{n})^{-1} \end{split}$$

Anti-Deuteron Prospects

Benchmark model: $m_{\chi} = 50$ GeV, $m_{A'} = 30$ GeV, $\sigma_{ann} = 1$ pb

Target Experiments: GAPS, AMS-02

$$\begin{split} \Phi_{\bar{d}} &= 2 \times 10^{-6} \; (\text{m}^2 \; \text{s sr GeV/n})^{-1} & 0.05 \lesssim T \lesssim 0.25 \; (\text{GeV/n})^{-1} \\ \Phi_{\bar{d}} &= 2 \times 10^{-6} \; (\text{m}^2 \; \text{s sr GeV/n})^{-1} & 0.2 \lesssim T \lesssim 0.8 \; (\text{GeV/n})^{-1} \\ \Phi_{\bar{d}} &= 1.4 \times 10^{-6} \; (\text{m}^2 \; \text{s sr GeV/n})^{-1} & 2.2 \lesssim T \lesssim 4.4 \; (\text{GeV/n})^{-1} \end{split}$$

Injection Spectra

MC with Pythia 8. Coalescence model

$$\mathcal{C}(ec{\Delta}) = \Theta(p_0^2 - ec{\Delta}^2) \qquad p_0 = 200 \,\, ext{MeV}$$

Fitting p_0 to data on \bar{d} production

From Ibarra & Wild 1209.5539, Dal & Raklev 1402.6259

Injection Spectra

MC with Pythia 8. Coalescence model

$$C(ec{\Delta}) = \Theta(p_0^2 - ec{\Delta}^2) \qquad p_0 = 200 \,\, ext{MeV}$$

Injection Spectra

MC with Pythia 8. Coalescence model

$$C(ec{\Delta}) = \Theta(p_0^2 - ec{\Delta}^2) \qquad p_0 = 200 \,\, ext{MeV}$$

• Boost antideuteron to rest frame of χ (isotropically)

Two zone diffusion model (Donato, Maurin, Taillet, 2002):

- Propagation in a cylinder of radius R = 20 kpc, half-height L
- Annihilation in disk of half-height h = 100 pc.

$$-\nabla[K(r,z,T)\nabla n_{\bar{d}}(r,z,T)] + \frac{\partial}{\partial z}[\operatorname{sgn}(z)V_{c}n_{\bar{d}}(r,z,T)] + 2h\delta(z)\Gamma_{ann}^{\bar{d}}n_{\bar{d}}(r,z,T) = Q_{\bar{d}}(r,z,T)$$

Two zone diffusion model (Donato, Maurin, Taillet, 2002):

- Propagation in a cylinder of radius R = 20 kpc, half-height L
- Annihilation in disk of half-height h = 100 pc.

$$-\nabla[K(r,z,T)\nabla n_{\bar{d}}(r,z,T)] + \frac{\partial}{\partial z}[\operatorname{sgn}(z)V_{c}n_{\bar{d}}(r,z,T)] + 2h\delta(z)\Gamma_{ann}^{\bar{d}}n_{\bar{d}}(r,z,T) = Q_{\bar{d}}(r,z,T)$$

Source:

$$Q_{\bar{d}} = \frac{1}{2} \langle \sigma v \rangle \frac{dN_{\bar{d}}}{dT} \left(\frac{\rho(r,z)}{m_{\chi}} \right)^2$$

Two zone diffusion model (Donato, Maurin, Taillet, 2002):

- Propagation in a cylinder of radius R = 20 kpc, half-height L
- Annihilation in disk of half-height h = 100 pc.

$$-\nabla[K(r,z,T)\nabla n_{\bar{d}}(r,z,T)] + \frac{\partial}{\partial z}[\operatorname{sgn}(z)V_{c}n_{\bar{d}}(r,z,T)] + 2h\delta(z)\Gamma_{ann}^{\bar{d}}n_{\bar{d}}(r,z,T) = Q_{\bar{d}}(r,z,T)$$

Source:

$$Q_{\bar{d}} = \frac{1}{2} \langle \sigma v \rangle \frac{dN_{\bar{d}}}{dT} \left(\frac{\rho(r,z)}{m_{\chi}} \right)^2$$

$$ho(r,z) = \exp(-2[(\sqrt{r^2 + z^2}/r_s)^{lpha} - (r_{\odot}/r_s)^{lpha}/lpha])$$

 $r_s = 20 \; {
m kpc}, \; lpha = 0.17$

Two zone diffusion model (Donato, Maurin, Taillet, 2002):

- Propagation in a cylinder of radius R = 20 kpc, half-height L
- Annihilation in disk of half-height h = 100 pc.

$$-\nabla[K(r,z,T)\nabla n_{\bar{d}}(r,z,T)] + \frac{\partial}{\partial z}[\operatorname{sgn}(z)V_{c}n_{\bar{d}}(r,z,T)] + \frac{2h\delta(z)\Gamma_{ann}^{\bar{d}}n_{\bar{d}}(r,z,T) = Q_{\bar{d}}(r,z,T)$$

Annihilation:

$$\Gamma^{\bar{d}}_{ann} = (n_H + 4^{2/3} n_{He}) \sigma^{\bar{d}p} v_{\bar{d}}$$

Two zone diffusion model (Donato, Maurin, Taillet, 2002):

- Propagation in a cylinder of radius R = 20 kpc, half-height L
- Annihilation in disk of half-height h = 100 pc.

$$-\nabla[K(r,z,T)\nabla n_{\bar{d}}(r,z,T)] + \frac{\partial}{\partial z}[\operatorname{sgn}(z)V_{c}n_{\bar{d}}(r,z,T)] + 2h\delta(z)\Gamma_{ann}^{\bar{d}}n_{\bar{d}}(r,z,T) = Q_{\bar{d}}(r,z,T)$$

Convection and Diffusion:

$$K(r, z, T) = \beta K_0 \left(\frac{\mathcal{R}(T)}{1 \text{GV}} \right)^{\delta}$$

Two zone diffusion model (Donato, Maurin, Taillet, 2002):

- Propagation in a cylinder of radius R = 20 kpc, half-height L
- Annihilation in disk of half-height h = 100 pc.

$$-\nabla[K(r,z,T)\nabla n_{\bar{d}}(r,z,T)] + \frac{\partial}{\partial z}[\operatorname{sgn}(z)V_{c}n_{\bar{d}}(r,z,T)] + 2h\delta(z)\Gamma_{ann}^{\bar{d}}n_{\bar{d}}(r,z,T) = Q_{\bar{d}}(r,z,T)$$

Convection and Diffusion:

$$K(r, z, T) = \beta K_0 \left(\frac{\mathcal{R}(T)}{1 \text{GV}}\right)^{\delta}$$

$$\Phi_{\odot}(r,z,T) = \frac{v_{\bar{d}}}{4\pi} n_{\bar{d}}(r,z,T)$$

$$\begin{array}{cccc} & K_0 \; [kpc^2/Myr] & \delta & L \; [kpc] & V_c \; [km/s] \\ \mbox{MED} & 0.0112 & 0.70 & 4 & 12 \\ \mbox{MAX} & 0.0765 & 0.46 & 15 & 5 \\ \end{array}$$

Cosmic Ray Propagation: Solar

Model transport in the solar environment by the force-field approximation (Gleeson, Axford, 1968):

$$\Phi_{\oplus}(T) = \Phi_{\odot}(T + e\phi_F) \frac{E^2(T) - m_{\bar{d}}^2}{E^2(T + e\phi_F) - m_{\bar{d}}^2} \qquad \phi_F = 500 \text{ MV}$$

Detection Prospects

Detection Prospects

Summary

- Given current detection results, it is likely that DM is hidden sector
- If so, indirect detection may be the only way to look for it
- Dark photon dark matter is a very general type of HSDM
- Antideuterons are promising probes of $m_\chi \gtrsim m_{A'} \sim \mathcal{O}(10 {
 m GeV})$ DPDM
- Very few other methods can access this space

Thank you!

Constraints on ϵ

Upper:

- Collider searches
- Direct detection:

$$\frac{\sigma_{\chi p}}{4\pi} \frac{\sigma_{\chi p}}{m_{A'}^4} \frac{m_{\chi}^2 m_p^2}{(m_{\chi} + m_p)^2}$$

Lower:

- Astrophysics: $\tau \lesssim \text{kpc}$
- BBN: $\tau \lesssim s$

Constraints on ϵ

Upper:

- Collider searches
- Direct detection:

$$\frac{\sigma_{\chi p} \sim}{\frac{1}{4\pi} \frac{g^2 \epsilon^2 e^2}{m_{A'}^4} \frac{m_{\chi}^2 m_p^2}{(m_{\chi} + m_p)^2}}$$

Lower:

- Astrophysics: $\tau \lesssim \text{kpc}$
- ► BBN: $\tau \lesssim s$

