Anti-matter from secondary cosmic-ray interactions

And the role of HBT interferometry

Blum, KCYN, Sato, Takimoto 1704.05431 Also recently, Blum Takimoto 1901.07088

Kenny, Chun Yu Ng (吳震宇) Weizmann Institute of Science

Cosmic ray relative abundance

 Primary ratios determined by the source +acceleration
 Physics

 Secondaries produced by spallation in flight

Martin Israel

Secondary production

- Primary ratios determined by the source +acceleration Physics
- Secondaries produced by spallation in flight
- Mean column density (Rigidity)

Cosmic Ray Beam Dump experiment

- Rigidity-dependent propagation
- Observed secondaries ∝ net production rate

$$\frac{n_a(\mathcal{R})}{n_b(\mathcal{R})} = \frac{Q_a(\mathcal{R})}{Q_b(\mathcal{R})} \qquad Q_a(\mathcal{R}) = \sum_P n_P(\mathcal{R}) \frac{\sigma_{P \to a}(\mathcal{R})}{m} - n_a(\mathcal{R}) \frac{\sigma_a(\mathcal{R})}{m}$$

Grammage

$$X_{\rm esc}(\mathcal{R}) = \frac{n_{\rm B}(\mathcal{R})}{Q_{\rm B}(\mathcal{R})}$$

$$({\rm B/C})$$

$$f_{\rm esc} = \frac{(B/C)}{\sum_{\rm P=C,N,O,...} (P/C) \frac{\sigma_{\rm P \to B}}{m} - (B/C) \frac{\sigma_{\rm B}}{m}}$$

Secondary CR antimatter

- We just need the production cross section now
- Astrophysical effects are absorbed in the empirical grammage factor*

- Secondary?
- Dark matter?
- ???

Cirelli et al 2014

Anti-deuteron and Anti-Helium

• The coalescence picture

$$E_{A} \frac{dN_{A}}{d^{3}p_{A}} = B_{A} R(x) \left(E_{p} \frac{dN_{p}}{d^{3}p_{p}} \right)^{A}$$
Coalescence yield
To be determined by data

$$\frac{A}{m_{p}^{A-1}} \left(\frac{4\pi}{3} p_{c}^{3} \right)^{A-1} = B_{A}$$

• p_c : the coalescence momentum***

Coalescence Yield (p_c)

- Chardonnet, Orloff, Salati 1997
 - 58 MeV for both B2 and B3, from $pp \rightarrow \bar{d}$ data
 - Drag down by low-CME high- p_t Serpukhov data
- Duperray et al 2005
 - 79 MeV for B2, joint *pp* and *pA* fit (underfits *pp*)
 79 MeV for B3, poor fits to the sparce *pA* data

Coalescence data (B2)

- Large variation
 - Between classes
 - Within classes

For CR secondaries
 -pp most important

Coalescence data (B3)

No pp data (yet)

• 79 MeV $- \sim 2 \times 10^{-5} \text{GeV}^4$

Coalescence-HBT relation

- Scheibl and Heinz 1999 (also Mrowczynski 1987 +++)
 - Coalescence probability is related to the source size R
 - R measured by the HBT interferometry
- Hanbury Brown and Twiss interferometry

Hanbury Brown and Twiss interferometry

$$C(k_1, k_2) = \frac{P_2(k_1, k_2)}{P_1(k_1)P_1(k_2)} = 1 \pm \cos[(k_1 - k_2).(x_1 - x_2)]$$

~ kd\theta

Generalize

$$C(k_1, k_2) = \frac{P_2(k_1, k_2)}{P_1(k_1)P_1(k_2)} = 1 \pm \lambda \ |\tilde{\rho}(q)|^2$$

Padula 2004

Hanbury Brown and Twiss interferometry

Fig. 2. Comparison between the values of the normalized correlation coefficient $\Gamma^2(d)$ observed from Sirius and the theoretical values for a star of angular diameter $0.0063^{"}$. The errors shown are the probable errors of the observations

Hanbury Brown and Twiss 1956

Padula 2004

HBT in nuclear physics

- Goldhaber, Goldhaber, Lee, Pais 1960
 - Independently

$$-p\bar{p} \rightarrow S \rightarrow \pi\pi$$

$$C(Q^2) = 1 + e^{-Q^2 r^2}$$

Baym 1997 <u>N44 1993</u>

 Space-time structure of nuclear collisions

Coalescence-HBT relation

- Scheibl and Heinz 1999 (also Mrowczynski 1987 +++)
 - Coalescence probability is related to the source size R
 - R measured by the HBT interferometry

$$B_3 = \frac{(2\pi)^3}{4\sqrt{3}} \langle C_3 \rangle (m_t R_1 R_2 R_3)^{-2}$$

$$\langle C_3 \rangle \approx \Pi_{i=1,2,3} \left(1 + \frac{b_3^2}{4R_i^2} \right)^{-1}$$

Coalescence-HBT relation

• No free parameters!

B2

Works pretty well

B3

 Also works pretty well

• B3 prediction $-2 \times 10^{-4} - 2 \times 10^{-3}$

• Dangerous $-pA \rightarrow pp$ $-B2 \rightarrow p_c \rightarrow B3$

Anti-Helium events?

 Could explain some of the AMS events?

 Need the most optimistic yield value

New Alice data

- $R \simeq 1.14 \text{ fm}$
 - $-1.4 \text{ GeV} m_t$

 $-\sqrt{s} = 7 \text{ TeV}$

-(1805.12455)

1709.08522

10

 $B_3 \,({
m GeV}^4/c^6)$

19

Coalescence-HBT relation

- Blum, Takimoto 1901.07088
 - More general derivation
 - Chaoticity parameter (λ)

 $C(Q^2) = 1 + e^{-Q^2 r^2}$

- More or less works
- Joint Yield-HBT data analysis should be done
 - Pt
 - centrality

Conclusion

- The Coalescence-HBT relation provides an interpretation to the yield data.
- The predicted anti-helium yield is much higher than previously thought.
- Joint Coalescence-HBT analysis may further reduce the uncertainty (*p_t* and centrality bins)
 Help predict the dark matter yield?
- Uncertainty in the secondary CR anti-nuclei could be significantly reduced.

Backup

