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I review the history of HBT interferometry, since its discovery in the mid 1950’s, up to the recent developments
and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by
members of our Brazilian group.

1 Introduction
I will discuss the fascinating method invented decades ago,
which turned into a very active field of investigation up to
the present. This year, we are celebrating the 50

th anniver-
sary of the first publication of the phenomenon observed
through this method. In this section, I will briefly tell the
story about the phenomenon in radio-astronomy, the subse-
quent observation of a similar one outside its original realm,
and many a posteriori developments in the field, up to the
present.

1.1 HBT

Figure 1. Aerial photo and illustration of the original HBT appara-
tus. They have been extracted from Ref.[1].

HBT interferometry, also known as two-identical-
particle correlation, was idealized in the 1950’s by Robert
Hanbury-Brown, as a means to measuring stellar radii

through the angle subtended by nearby stars, as seen from
the Earth’s surface.

Figure 2. Picture of the two telescopes used in the HBT experi-
ments. The figure was extracted from Ref.[1].

Before actually performing the experiment, Hanbury-
Brown invited Richard Q. Twiss to develop the math-
ematical theory of intensity interference (second-order
interference)[2]. A very interesting aspect of this exper-
iment is that it was conceived by both physicists, who
also built the apparatus themselves, made the experiment in
Narrabri, Australia, and finally, analyzed the data. Nowa-
days, the experiments doing HBT at the RHIC/BNL accel-
erator have hundreds of participants. We could briefly sum-
marize the experiment by informing that it consisted of two
mirrors, each one focusing the light from a star onto a photo-
multiplier tube. An essential ingredient of the device was the
correlator, i.e., an electronic circuit that received the signals
from both mirrors and multiplied them. As Hanbury-Brown
himself described it, they “ ... collected light as rain in a
bucket ... ”, there was no need to form a conventional im-
age: the (paraboloidal) telescopes used for radio-astronomy
would be enough, but with light-reflecting surfaces. The
necessary precision of the surfaces was governed by max-
imum permissible field of view. The draw-back they had to
face in the first years was the skepticism of the community
about the correctness of the results. Some scientists consid-
ered that the observation could not be real because it would
violate Quantum Mechanics. In reality, in 1956, helped by
Purcell [3], they managed to show that it was the other way
round: not only the phenomenon existed, but it also followed
from the fact that photons tended to arrive in pairs at the
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of other CRs, notably protons, with interstellar matter
(ISM), notably hydrogen in the Galaxy. While the de-
tails of CR propagation are unknown, the confinement in
the Galaxy is magnetic and thus di↵erent CR particles
that share a common distribution of sources exhibit simi-
lar propagation if sampled at the same magnetic rigidity
R = p/Z. It is therefore natural to gauge the propa-
gation of CR anti-nuclei from that of secondary nuclei
like boron (B), formed by fragmentation of heavier CRs.
For such secondaries, the ratio of densities of two specie
a, b satisfies an approximate empirical relation, valid at
relativistic energies (R & few GV) [29–31],

na(R)

nb(R)
=

Qa(R)

Qb(R)
. (1)

Here Qa denotes the net production of species a per unit
ISM column density,

Qa(R) =
X

P

nP (R)
�P!a(R)

m

� na(R)
�a(R)

m

, (2)

where �a/m and �P!a/m are the total inelastic and the
partial P ! a cross section per target ISM particle mass
m, respectively. These cross sections can (and for p̄, d̄
and 3He, do) depend on energy. In Eq. (2) we define
these cross sections such that the source term Qa(R) is
proportional to the progenitor species density nP (R) ex-
pressed at the same rigidity.

Eq. (1) is theoretically natural, in that it is guaran-
teed to apply if the relative composition of the CRs (not
CR intensity, nor target ISM density) in the regions that
dominate the spallation is similar to that measured lo-
cally at the solar system [31, 32], and as long as no sig-
nificant energy gain/loss occurs during propagation. Re-
stricting our analysis to R � 5 GV, we expect Eq. (1)
to be accurate to order 10% or so, as demonstrated by
nuclei data [29–31, 33].

Eq. (1) is useful because we can use the measured flux
of B, C, O, p, He,... to predict, e.g., the p̄ flux [31, 33, 34]:

np̄(R) =
nB(R)

QB(R)
Qp̄(R). (3)

The RHS of Eq. (3) is derived from laboratory cross sec-
tion data and from direct measurements of local CRs,
without reference to any detail of propagation.

The quantity

Xesc(R) =
nB(R)

QB(R)
, (4)

known as the CR grammage, measures the column den-
sity of ISM traversed by CRs. We combine AMS02
B/C [35] and C/O [36] with heavier CR data from
HEAO3 [29] and with laboratory fragmentation cross sec-
tion data (see e.g. [37]), to derive Xesc directly from mea-
surements:

Xesc =
(B/C)P

P=C,N,O,... (P/C)
�P!B

m � (B/C)�B
m

. (5)
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FIG. 2: Observed p̄/p ratio [28] vs. the secondary predic-
tion. Wiggles in the theory curve come from our direct data-
driven use of the CR grammage, and reflect fluctuations in
the AMS02 B/C data [35]. Thick line is the secondary pre-
diction with input cross sections detailed in App. E, while
thin lines show the response of the prediction for variation
in (i) pp ! p̄ cross section within ±20%, (ii) fragmentation
cross section p12C!11B within ±20%, (iii) variation in the
solar modulation parameter in the range � = (0.2� 0.8) GV.

Our result for Xesc agrees with the power-law approxi-
mation derived in Ref. [33] to 20% accuracy.
Now that we have Xesc, we use the p̄ production and

loss cross sections parametrised in [38, 39] (applying the
correction in [40]) together with measurements of the pro-
ton and helium [41, 42] flux to calculate Qp̄ and apply it
in Eq. (3). Solar modulation is included as in [30] with
� = 450 MV. The result is compared to data in Figs. 1-2.

Figs. 1-2 demonstrate that the p̄ flux measured by
AMS02 [28] is consistent with secondary production [33].
Beyond this fact, they also demonstrate that – as far as
relativistic, stable, secondary nuclei and anti-nuclei CRs
are considered – the Galaxy is essentially a fixed-target
experiment. Having calibrated the set-up on one species
(B), one can calculate the flux of other secondaries
directly from particle physics cross sections. The prob-
lem of predicting the anti-nuclei CR flux is therefore
decoupled from the modelling of propagation and is
reduced to calculating the relevant cross sections, to
which we attend next.

Calibrating coalescence with HBT correlations.
We use a coalescence ansatz [43–45] relating the forma-
tion of composite nucleus product with mass number A

to the formation cross section of the nucleon constituents:

EA
dNA

d

3
pA

= BA R(x)
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pp
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where dNi = d�i/� is the di↵erential yield, � is the total
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Figure 2: Predicted fluxes of anti-He from the annihilation of a 20 GeV DM particle into
light quarks (top row), 40 GeV into bb̄ (middle row) and 1 TeV into W+W� (bottom row),
compared to the predicted astrophysical background, to the current bounds and to the expected
sensitivity of Ams-02. Left column: the three lines from bottom to top correspond to Min, Med,
Max. Lighter shades individuate fluxes disfavored by p̄ constraints. Right column: varying the
coalescence momentum. For the background, the three lines for p0 = 167 MeV (barely distin-
guishable) also correspond to Min, Med, Max.
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of other CRs, notably protons, with interstellar matter
(ISM), notably hydrogen in the Galaxy. While the de-
tails of CR propagation are unknown, the confinement in
the Galaxy is magnetic and thus di↵erent CR particles
that share a common distribution of sources exhibit simi-
lar propagation if sampled at the same magnetic rigidity
R = p/Z. It is therefore natural to gauge the propa-
gation of CR anti-nuclei from that of secondary nuclei
like boron (B), formed by fragmentation of heavier CRs.
For such secondaries, the ratio of densities of two specie
a, b satisfies an approximate empirical relation, valid at
relativistic energies (R & few GV) [29–31],

na(R)

nb(R)
=

Qa(R)

Qb(R)
. (1)

Here Qa denotes the net production of species a per unit
ISM column density,

Qa(R) =
X

P

nP (R)
�P!a(R)

m

� na(R)
�a(R)

m

, (2)

where �a/m and �P!a/m are the total inelastic and the
partial P ! a cross section per target ISM particle mass
m, respectively. These cross sections can (and for p̄, d̄
and 3He, do) depend on energy. In Eq. (2) we define
these cross sections such that the source term Qa(R) is
proportional to the progenitor species density nP (R) ex-
pressed at the same rigidity.

Eq. (1) is theoretically natural, in that it is guaran-
teed to apply if the relative composition of the CRs (not
CR intensity, nor target ISM density) in the regions that
dominate the spallation is similar to that measured lo-
cally at the solar system [31, 32], and as long as no sig-
nificant energy gain/loss occurs during propagation. Re-
stricting our analysis to R � 5 GV, we expect Eq. (1)
to be accurate to order 10% or so, as demonstrated by
nuclei data [29–31, 33].

Eq. (1) is useful because we can use the measured flux
of B, C, O, p, He,... to predict, e.g., the p̄ flux [31, 33, 34]:

np̄(R) =
nB(R)

QB(R)
Qp̄(R). (3)

The RHS of Eq. (3) is derived from laboratory cross sec-
tion data and from direct measurements of local CRs,
without reference to any detail of propagation.

The quantity

Xesc(R) =
nB(R)

QB(R)
, (4)

known as the CR grammage, measures the column den-
sity of ISM traversed by CRs. We combine AMS02
B/C [35] and C/O [36] with heavier CR data from
HEAO3 [29] and with laboratory fragmentation cross sec-
tion data (see e.g. [37]), to derive Xesc directly from mea-
surements:

Xesc =
(B/C)P

P=C,N,O,... (P/C)
�P!B

m � (B/C)�B
m

. (5)

R [GV]
101 102 103

p
b
a
r/

p

10-4

10-3

σ(pp-->pbar), 20%

σ(12C-->11B), 20%

Φ, (0.2-0.8) GV

FIG. 2: Observed p̄/p ratio [28] vs. the secondary predic-
tion. Wiggles in the theory curve come from our direct data-
driven use of the CR grammage, and reflect fluctuations in
the AMS02 B/C data [35]. Thick line is the secondary pre-
diction with input cross sections detailed in App. E, while
thin lines show the response of the prediction for variation
in (i) pp ! p̄ cross section within ±20%, (ii) fragmentation
cross section p12C!11B within ±20%, (iii) variation in the
solar modulation parameter in the range � = (0.2� 0.8) GV.

Our result for Xesc agrees with the power-law approxi-
mation derived in Ref. [33] to 20% accuracy.
Now that we have Xesc, we use the p̄ production and

loss cross sections parametrised in [38, 39] (applying the
correction in [40]) together with measurements of the pro-
ton and helium [41, 42] flux to calculate Qp̄ and apply it
in Eq. (3). Solar modulation is included as in [30] with
� = 450 MV. The result is compared to data in Figs. 1-2.

Figs. 1-2 demonstrate that the p̄ flux measured by
AMS02 [28] is consistent with secondary production [33].
Beyond this fact, they also demonstrate that – as far as
relativistic, stable, secondary nuclei and anti-nuclei CRs
are considered – the Galaxy is essentially a fixed-target
experiment. Having calibrated the set-up on one species
(B), one can calculate the flux of other secondaries
directly from particle physics cross sections. The prob-
lem of predicting the anti-nuclei CR flux is therefore
decoupled from the modelling of propagation and is
reduced to calculating the relevant cross sections, to
which we attend next.

Calibrating coalescence with HBT correlations.
We use a coalescence ansatz [43–45] relating the forma-
tion of composite nucleus product with mass number A

to the formation cross section of the nucleon constituents:

EA
dNA

d

3
pA

= BA R(x)

✓
Ep

dNp

d

3
pp

◆A

, (6)

where dNi = d�i/� is the di↵erential yield, � is the total

3

inelastic cross section, and the constituent momenta are
taken at pp = pA/A.

The factor R(x), with x =
q
s+A

2
m

2
p � 2

p
sẼA and

ẼA the centre of mass product nucleus energy, is a phase
space correction that we define as in [46]. This becomes
necessary in order to extend the coalescence analysis
down to near-threshold collision energies, important for
the astrophysics as well as for low energy laboratory data.
Details on the derivation of R(x) are given in App. C.

BA, the coalescence factor, needs to be extracted from
accelerator data. However, experimental information on
d̄ and 3He production is scarce and, in the most part,
limited to AA or pA collisions. For pp collisions, the most
relevant system for CR astrophysics, no quantitative data
exists for pp ! 3He, and the data for pp ! d̄ is sparse.

Faced with this problem, previous estimates [12–16] of
the secondary CR d̄ and 3He flux made two key simpli-
fying assumptions:

1. Coalescence parameters used to fit pp ! d̄ data
were translated directly to pp ! 3He. More pre-
cisely, the coalescence factor BA was converted to
a coalescence momentum pc, via

A

m

A�1
p

✓
4⇡

3
p

3
c

◆A�1

= BA. (7)

The value of pc found from pp ! d̄ accelerator data
was then assumed to describe pp ! 3He.

2. The same coalescence momentum was sometimes
assumed to describe both pA ! d̄ and pp ! d̄.

In what follows we give theoretical and empirical evi-
dence, suggesting that both assumptions may be incor-
rect. To do this, we make an excursion into the physics
of coalescence.

The role of the factor BA is to capture the probability
for A nucleons produced in a collision to merge into a
composite nucleus. It is natural for the merger probabil-
ity to scale as [47–49]

BA / V

1�A
, (8)

where V is the characteristic volume of the hadronic
emission region. A model of coalescence that realises
the scaling of Eq. (8) was presented in Ref. [17]. A key
observation in [17] is that the same hadronic emission
volume is probed by Hanbury Brown-Twiss (HBT) two-
particle correlation measurements [18]. Both HBT data
and nuclear yield measurements are available for AA and
pA systems, allowing a test of Eq. (8).

Ref. [17] proposed the following formula for the coales-
cence factor,

B3 =
(2⇡)3

4
p
3

hC3i (mt R1 R2 R3)
�2

. (9)

Here, mt is the transverse mass and Ri are the mt-
dependent HBT scales characterising the collision. For
concreteness we focus on A = 3, but the treatment of
A = 2 is analogous. The quantity hC3i expresses the
finite support of the 3He wave function. It may be esti-
mated via

hC3i ⇡ ⇧i=1,2,3

✓
1 +

b

2
3

4R2
i

◆
�1

, (10)

where b3 ⇡ 1.75 fm is the 3He nucleus size. For pt .
1 GeV, setting Ri ⇡ R, we have

B3

GeV4
⇡ 0.0024

 ✓
R(pt)

1 fm

◆2

+ 0.8

✓
b3

1.75 fm

◆2
!

�3

(11)

The extension to deuterium, with nucleus size b2 =
3.2 fm, is given by

B2

GeV2
⇡ 0.068

 ✓
R(pt)

1 fm

◆2

+ 2.6

✓
b2

3.2 fm

◆2
!

�

3
2

(12)

The coalescence factor in AA, pA, and pp collisions,
presented w.r.t. HBT scale deduced for the same sys-
tems, is shown in Fig. 3. The data analysis entering into
making the plot is summarised in App. A. The data is
consistent with Eqs. (11) (bottom panel) and (12) (top
panel), albeit with large uncertainty.
HBT data for pp collisions [19, 20, 50] suggest R in the

range 0.5 � 1.2 fm, indicated by letters in both panels
of Fig. 3. For pp ! d̄, direct measurements from the
ISR [51–53] give

B

(pp)
2 = (0.75� 2.4)⇥ 10�2 GeV2

. (13)

As seen in the top panel of Fig. 3, this result is consistent
with the intersect of Eq. (12) with the specified range of
R. (As done in Refs. [13–15], we discard here the high-pt
data from Serpukhov [54] and only show it in Fig. 3 for
completeness. Details can be found in App. A.)
For pp ! 3He we do not have direct experimental in-

formation. We therefore extract a rough prediction of
B3, by taking the intersect of Eq. (11) with the two ends
of the relevant range for R. This gives the following order
of magnitude estimate:

B

(pp)
3 = (2� 20)⇥ 10�4 GeV4 (HBT� based),(14)

marked by the two horizontal dashed lines in the bottom
panel of Fig. 3.
Results from the ALICE experiment allow us to make

a preliminary test of Eq. (14). Ref. [55] reported 20 3He
and 20 t in the ALICE pp

p
s = 7 TeV run, corresponding

to luminosity L ⇡ 2.2 nb�1 with a pseudo-rapidity cut
|⌘| < 0.9 and with no further pt cut1. The pt-dependent

1 We thank Natasha Sharma for clarifying the experimental pro-
cedure.

Coalescence yield
To be determined by data



Coalescence Yield (!")
• Chardonnet, Orloff, Salati 1997 
– 58 MeV for both B2 and B3, from !! → %̅ data
– Drag down by low-CME high-!& Serpukhov data

• Duperray et al 2005 
– 79 MeV for B2, joint !! and !' fit (underfits !!)
– 79 MeV for B3, poor fits to the sparce !' data
.
.
.
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Coalescence data (B2)
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• Large variation
– Between classes
– Within classes

• For CR secondaries
– !! most important



Coalescence data (B3)
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• No pp data (yet)

• 79 MeV 
– ∼ 2×10&'GeV(

12
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p
lab

 [GeV]

10-6

10-5

10-4

B
3
 [
G

e
V

4
]

He3bar, pAl
He3bar, pBe
tbar, pBe

FIG. 11: B

(pA)
3 from SPS, plab = 200 � 240 GeV, 3He, t

data [58, 75]. We show the inferred value of B3, with er-
ror bars reflecting only the quoted experimental uncertainties
on the 3He/⇡� and t/⇡� ratios in the given momentum bins.
We use pp ! p̄,⇡

� cross sections from [39] subtracting a 19%
hyperon contribution.

For the derivation of B3 (lower panel of Fig. 3):

• pAl/Be SPS 200-240 GeV (B3(3He), B3(t)):
The analysis of the 3He and t data from Ref. [58, 75]
is analogous to that described for d̄. The systematic
uncertainties here are more severe, because the p̄

distributions are sampled at lower momentum and
because they must be raised to a higher power to
extract B3. Our analysis is summarised in Fig. 11.
In quoting the result in Fig. 3 we discard the highest
plab data point.

• PbPb Central/O↵ ALICE 2.76 TeV with
high/low pt (B3(3He), B3(3He)): Ref. [56] also
reported B3 for both 3He and 3He in PbPb collision
at

p
sNN = 2.76 TeV. The data shows B3(3He) ⇡

B3(3He) with weak dependence on pt. We pick
up four types of B3: two centrality classes (cen-
tral: 0 � 10% and o↵: 20 � 80%) and two trans-
verse momenta (high: pt/3 ' 1.4 GeV and low:
pt/3 ' 0.8 GeV).

• PbPb Central NA44/NA49 158A GeV
(B3(3He)): Ref. [70] reported B3 for 3He in cen-
tral PbPb collision at 158 GeV/nucleon. B3 weakly
depends on pt and we take the pt ' 0 data point.

Ref. [78] reported B

PbPb
3 (3He) = 1+2

�1

⇥ 10�6,
B

PbPb
3 (3He) = 1+2

�1

⇥10�5, BPbPb
2 (d̄) = (1�1.5)⇥

10�3, BPbPb
2 (d) = (0.7�1.1)⇥10�3. In addition to

the PbPb measurements, AA and pA results from
other experiments were also summarised, report-
ing B

pA
3 ⇡ 10�4, B

pA
2 ⇡ 10�2, similar for mat-

ter and antimatter. In particular, the SPS pAl/Be

data of [58] is quoted as B

pA
3 (3He) ⇡ B

pA
3 (3He) ⇡

2 ⇥ 10�4. However, no derivation is reported, and
the latter result – while it agrees with expectations
from Eq. (11) and with other data in Fig. 3 – does
not quite agree with what we find in our own anal-
ysis of [58].

• AuAu Central STAR 200 GeV (B3(3He),
B3(3He)): Ref. [77] also reported B3 for 3He and
3He in central AuAu collision at

p
sNN = 200 GeV.

The data shows B3(3He) ⇡ B3(3He) with weak de-
pendence on pt. We take the pt/3 ' 0.8 GeV data
point.

Finally, we have also analyzed a number of interme-
diate CME pp and pA experimental results for matter.
While this data appears to be generally consistent with
the trend for antimatter, we do not add it to Fig. 3, as
it may lead to upward bias in B2 and B3. Very low
CME nuclei production data [62–69] shows that matter
coalescence (or fragmentation, in this case) contains ad-
ditional channels beyond those available for antimatter,
that may contaminate the intermediate CME regime. For
completeness we summarise our results below.

• pp Serpukhov 11.5 GeV (B2(d)): Ref. [54]
also reported the d yield. We analyze the data
using pp ! p cross sections from [74]. We find
B2(d) ⇠ B2(d̄) ⇥ 2.2. As in the d̄ data from the
same reference, the data corresponds to low CME/
high-pt.

• pAl/Be SPS 200-240 GeV (B2(d)): Ref. [58,
75] also reported the yield of deuterons. The cross
section fits of [39] are inaccurate for pp ! p,
meaning that we cannot repeat our exercise for
the d̄ analysis of the same reference. Instead, we
use Fig. 4 of [58] to estimate of B2(d), finding
B2(d) ⇠ B2(d̄)⇥2.5. Note that Fig. 4 of [58] uses a
Hagedorn-Ranft model to translate relative hadron
yields to cross section. However, the same model
fails to reproduce the relative hadron yields in [58]
(see Fig. 2 there). The estimate of B2(d) derived
this way should therefore be taken with caution.

• FNAL pBe/Ti/W 300 GeV (B2(d)): Ref. [76]
also reported d production. Following a similar
prescription as we did for the d̄ data, we derive
B

pBe
2 (d) = (0.9�1.3)⇥10�2 GeV2, BpTi

2 (d) = (2�
3)⇥10�2 GeV2, BpW

2 (d) = (3.0�3.8)⇥10�2 GeV2,
for pt = 2.29 GeV.

• pC/Al/Cu/W 50 GeV IHEP-SPIN (B2(d)):
Ref. [79] reported B2 for d in a collision of 50 GeV
proton beam with targets of C, Al, Cu, and W:
B2 = (1.1� 1.5)⇥ 10�2 GeV2 for pt ' 1.4 GeV.

• pC/Al/Cu/W 50 GeV IHEP-SPIN (B3(t)):
Ref. [79] reported B3 for t in a collision of 50 GeV

?
?
?



Coalescence-HBT relation
• Scheibl and Heinz 1999 (also Mrowczynski 1987 +++)

– Coalescence probability is related to the source size R
– R measured by the HBT interferometry

• Hanbury Brown and Twiss interferometry
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Hanbury Brown and Twiss interferometry
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I review the history of HBT interferometry, since its discovery in the mid 1950’s, up to the recent developments
and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by
members of our Brazilian group.

1 Introduction
I will discuss the fascinating method invented decades ago,
which turned into a very active field of investigation up to
the present. This year, we are celebrating the 50

th anniver-
sary of the first publication of the phenomenon observed
through this method. In this section, I will briefly tell the
story about the phenomenon in radio-astronomy, the subse-
quent observation of a similar one outside its original realm,
and many a posteriori developments in the field, up to the
present.

1.1 HBT

Figure 1. Aerial photo and illustration of the original HBT appara-
tus. They have been extracted from Ref.[1].

HBT interferometry, also known as two-identical-
particle correlation, was idealized in the 1950’s by Robert
Hanbury-Brown, as a means to measuring stellar radii

through the angle subtended by nearby stars, as seen from
the Earth’s surface.

Figure 2. Picture of the two telescopes used in the HBT experi-
ments. The figure was extracted from Ref.[1].

Before actually performing the experiment, Hanbury-
Brown invited Richard Q. Twiss to develop the math-
ematical theory of intensity interference (second-order
interference)[2]. A very interesting aspect of this exper-
iment is that it was conceived by both physicists, who
also built the apparatus themselves, made the experiment in
Narrabri, Australia, and finally, analyzed the data. Nowa-
days, the experiments doing HBT at the RHIC/BNL accel-
erator have hundreds of participants. We could briefly sum-
marize the experiment by informing that it consisted of two
mirrors, each one focusing the light from a star onto a photo-
multiplier tube. An essential ingredient of the device was the
correlator, i.e., an electronic circuit that received the signals
from both mirrors and multiplied them. As Hanbury-Brown
himself described it, they “ ... collected light as rain in a
bucket ... ”, there was no need to form a conventional im-
age: the (paraboloidal) telescopes used for radio-astronomy
would be enough, but with light-reflecting surfaces. The
necessary precision of the surfaces was governed by max-
imum permissible field of view. The draw-back they had to
face in the first years was the skepticism of the community
about the correctness of the results. Some scientists consid-
ered that the observation could not be real because it would
violate Quantum Mechanics. In reality, in 1956, helped by
Purcell [3], they managed to show that it was the other way
round: not only the phenomenon existed, but it also followed
from the fact that photons tended to arrive in pairs at the

Padula 2004

70 Brazilian Journal of Physics, vol. 35, no. 1, March, 2005

HBT Interferometry: Historical Perspective
Sandra S. Padula
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two correlators, as a consequence of Bose-Einstein statis-
tics. A very interesting review about these early years was
written by Gerson Goldhaber[1], one of the experimentalists
responsible for discovering the identical particle correlation
in the opposite realm of HBT: the microcosmos of high en-
ergy collisions.

1.2 GGLP
In 1959, Goldhaber, Goldhaber, Lee and Pais performed
an experiment at the Bevalac/LBL, in Berkeley, CA, USA,
aiming at the discovery of the Ω0 resonance[4]. In the
experiment, they considered p̄p collisions, at 1.05 GeV/c.
They were searching for the resonance by means of the de-
cay Ω0 ! º+º°, by measuring the unlike pair, º+º°,
mass-distribution and comparing it with the ones for like
pairs, º±º±. Afterwards, they concluded that there was
not enough statistics for establishing the existence of Ω0.
Nevertheless, they observed an unexpected angular corre-
lation among identical pions! Later, in 1960, they success-
fully reproduced the empirical angular distribution by a de-
tailed multi-º phase-space calculation using symmetrized
wave functions for LIKE particles. Being so, they concluded
the effect was a consequence of the Bose-Einstein nature of
º+º+ and º°º°. They were not aware of the experiment
Hanbury-Brown and Twiss had performed previously. Thus,
they had discovered, by chance, the counterpart of the HBT
effect in high energy collisions. They parameterized the ob-
served correlation as:

C(Q2

) = 1 + e°Q2r2
= 1 + e(q2

0°q2
)r2

(1)
Q2

= °q2

= °(k
1

° k
2

)

2

= M2

12

° (m
1

+ m
2

)

2 .

The Gaussian form in the above equation, and several of its
variant options, would be widely used in the years to come,
mainly by the experimentalists, due to the simplicity of the
emission source and analytical results allowed by this pro-
file. We will see which are the parameters and interpreta-
tions derived from it in a while.

1.3 Simple picture
At this point, it is natural to ask the question: How to under-
stand interferometry, or two-particle correlation, in a simple
way? First of all, we should anticipate that it follows from
considering two essential points: the adequate quantum sta-
tistics and chaotically emitting sources, which was already
emphasized by Bartknik and Rza̧żewski[5]. Let me illus-
trate it by a simple example of only two point sources, as
shown in Fig. 3:

The amplitude for the process can be written as

A(k
1

, k
2

) =

1p
2

[e°ik1.(xA°x1)ei¡1e°ik2.(xB°x2)ei¡2

± e°ik1.(xA°x2)ei¡0
2e°ik2.(xB°x1)ei¡0

1
], (2)

where the (+) sign refers to bosons and the (°) one, to
fermions. In the above equation, ¡i corresponds to an
aleatory phase associated to each independent emission
(completely chaotic sources), i.e., one phase at random in

each emission. These phases are also considered to be inde-
pendent on the momenta k of the emitted quanta.
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Figure 3. Simplified picture: two point sources, I and II, emit
quanta considered as plane waves, which are observed in detec-
tors A and B, respectively, with momenta kµ

1 and kµ
2 . Since the

quanta are indistinguishable, there are two possible combinations
for this observation, illustrated by the two continuous and the two
dashed lines.

The probability for a joint observation of the two quanta
with momenta k

1

and k
2

is given by
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The emission being chaotic, we have to consider an av-
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where Pi(ki) is the single-inclusive distribution. It is es-
timated in a similar way as in the simultaneous detection
discussed above, i.e.,
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In the above case, we would have he±i(¡1°¡2)i = ±¡1¡2 .
Since the source is supposed to be chaotic, the two aleatory
phases of emission would be equal only if they were emitted
at the same space-time point. However, since we are consid-
ering here that the probability of two simultaneous emission
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two correlators, as a consequence of Bose-Einstein statis-
tics. A very interesting review about these early years was
written by Gerson Goldhaber[1], one of the experimentalists
responsible for discovering the identical particle correlation
in the opposite realm of HBT: the microcosmos of high en-
ergy collisions.

1.2 GGLP
In 1959, Goldhaber, Goldhaber, Lee and Pais performed
an experiment at the Bevalac/LBL, in Berkeley, CA, USA,
aiming at the discovery of the Ω0 resonance[4]. In the
experiment, they considered p̄p collisions, at 1.05 GeV/c.
They were searching for the resonance by means of the de-
cay Ω0 ! º+º°, by measuring the unlike pair, º+º°,
mass-distribution and comparing it with the ones for like
pairs, º±º±. Afterwards, they concluded that there was
not enough statistics for establishing the existence of Ω0.
Nevertheless, they observed an unexpected angular corre-
lation among identical pions! Later, in 1960, they success-
fully reproduced the empirical angular distribution by a de-
tailed multi-º phase-space calculation using symmetrized
wave functions for LIKE particles. Being so, they concluded
the effect was a consequence of the Bose-Einstein nature of
º+º+ and º°º°. They were not aware of the experiment
Hanbury-Brown and Twiss had performed previously. Thus,
they had discovered, by chance, the counterpart of the HBT
effect in high energy collisions. They parameterized the ob-
served correlation as:
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The Gaussian form in the above equation, and several of its
variant options, would be widely used in the years to come,
mainly by the experimentalists, due to the simplicity of the
emission source and analytical results allowed by this pro-
file. We will see which are the parameters and interpreta-
tions derived from it in a while.

1.3 Simple picture
At this point, it is natural to ask the question: How to under-
stand interferometry, or two-particle correlation, in a simple
way? First of all, we should anticipate that it follows from
considering two essential points: the adequate quantum sta-
tistics and chaotically emitting sources, which was already
emphasized by Bartknik and Rza̧żewski[5]. Let me illus-
trate it by a simple example of only two point sources, as
shown in Fig. 3:

The amplitude for the process can be written as
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where the (+) sign refers to bosons and the (°) one, to
fermions. In the above equation, ¡i corresponds to an
aleatory phase associated to each independent emission
(completely chaotic sources), i.e., one phase at random in

each emission. These phases are also considered to be inde-
pendent on the momenta k of the emitted quanta.
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Figure 3. Simplified picture: two point sources, I and II, emit
quanta considered as plane waves, which are observed in detec-
tors A and B, respectively, with momenta kµ

1 and kµ
2 . Since the

quanta are indistinguishable, there are two possible combinations
for this observation, illustrated by the two continuous and the two
dashed lines.
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where Pi(ki) is the single-inclusive distribution. It is es-
timated in a similar way as in the simultaneous detection
discussed above, i.e.,
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In the above case, we would have he±i(¡1°¡2)i = ±¡1¡2 .
Since the source is supposed to be chaotic, the two aleatory
phases of emission would be equal only if they were emitted
at the same space-time point. However, since we are consid-
ering here that the probability of two simultaneous emission
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by the same source is negligible, we would be forced to con-
clude that only possible solution to this problem that would
satisfy this criterium is that the average over phases is null,
in the case of observation by a single detector. We see then
that Pi(ki) = 1 in this case and then the result on Eq.(5)
follows.

Already from the very simple example discussed above,
se can see that, in the case of two identical bosons (fermi-
ons), we expect to see that C(q = k

1

° k
2

= 0) = 2 (0)

for completely chaotic sources. On the contrary, in the case
of total coherence C(q = k

1

° k
2

) = 1 for all values of the
momentum difference. For large values of their relative mo-
menta, however, the correlation function should tend to one,
which is clearly not the case in Eq. (5). But this is merely
the consequence of considering an oversimplified example
of only two point sources.

1.4 Extended sources

More generally, for extended sources in space and time, if
Ω(x) is the normalized space-time distribution, we have
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Then, the two-particle correlation function can be writ-

ten as
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In Eq.(9) we added, as historically done, the parame-
ter ∏, later called incoherence or chaoticity parameter.
This was introduced by Deutschmann et al.[6], in 1978, as
a means for reducing systematic errors in the experimental
fits of the correlation function. The origin of the large sys-
tematic errors was the Gaussian fit. The reason was that the
experimentalists tried to fit the data points with Gaussian
functions whose maxima in q = 0 were 2, although the data
never reached that maximum value. This led to discrepan-
cies and to large systematic errors. The easiest way out of
this apparent inconsistency was to add a fit parameter, ∏,
thus reducing the systematic errors by the introduction of
this extra degree of freedom.
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Figure 4. Simple illustration corresponding to the ideal Gaussian
source. The upper curve represents to the bosonic case, while the
lower curve, the fermionic one. The parameter R is the r.m.s. ra-
dius of the emitting region.

To illustrate the correlation function as written in Eq.(9)
with a simple analytical example, let us consider the
Gaussian profile, i.e.,

Ω(x) = e°xµxµ/(2R)

2 °! Ω(q) = e°q2R2/2 . (10)

Consequently, in this very simple example, a typical corre-
lation function is written as

C(k
1

, k
2

) = 1 ± ∏ e°q2R2
. (11)

In equation (11), as we denoted before, the plus sign
refers to the bosonic case, and the minus sign to the fermi-
onic one. We easily see that, in this simple example, we
would expect experimental ideal HBT data to behave as
sketched in Fig. 4, where the upper part refers to bosons and
the lower one, to fermions. We see that, in the two-boson
(two-fermion) case, there is an enhancement (depletion) of
the correlation function in the region where the relative mo-
menta of the pair are small. In both cases of this simple
example, the typical size of the emission region corresponds
to the inverse width of the C(k

1

, k
2

) curve, plotted as a func-
tion of q = k

1

° k
2

.
Returning to the discussion of the fit parameter ∏, I

would like to point out that there is a very simple explanation
to reconcile this apparent inconsistency, without the need to
introduce this extra degree of freedom. Limited statistics
is behind it, since it is virtually impossible to measure two
identical particles with exactly the same momenta. This led
the experimentalists to split the momenta of the particles in
small bins. In more recent times, these bins can be projected
in two or more dimensions. For instance, along the income
beam direction in fixed target heavy ion collisions (qL), and
in the direction transverse to it (qT ). Good quality data al-
low the experimentalists to consider very small bin sizes.
Nevertheless, their range is finite. Being so, when the corre-
lation function is projected along, say, the qT direction, the
smallest value of qL is not zero, but within the first (smaller)
bin size, in case of high enough statistics. Consequently,
we immediately see that the correlation function plotted as
a function of qT , will not reach the maximum (minimum)
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I review the history of HBT interferometry, since its discovery in the mid 1950’s, up to the recent developments
and results from BNL/RHIC experiments. I focus the discussion on the contributions to the subject given by
members of our Brazilian group.

1 Introduction
I will discuss the fascinating method invented decades ago,
which turned into a very active field of investigation up to
the present. This year, we are celebrating the 50

th anniver-
sary of the first publication of the phenomenon observed
through this method. In this section, I will briefly tell the
story about the phenomenon in radio-astronomy, the subse-
quent observation of a similar one outside its original realm,
and many a posteriori developments in the field, up to the
present.

1.1 HBT

Figure 1. Aerial photo and illustration of the original HBT appara-
tus. They have been extracted from Ref.[1].

HBT interferometry, also known as two-identical-
particle correlation, was idealized in the 1950’s by Robert
Hanbury-Brown, as a means to measuring stellar radii

through the angle subtended by nearby stars, as seen from
the Earth’s surface.

Figure 2. Picture of the two telescopes used in the HBT experi-
ments. The figure was extracted from Ref.[1].

Before actually performing the experiment, Hanbury-
Brown invited Richard Q. Twiss to develop the math-
ematical theory of intensity interference (second-order
interference)[2]. A very interesting aspect of this exper-
iment is that it was conceived by both physicists, who
also built the apparatus themselves, made the experiment in
Narrabri, Australia, and finally, analyzed the data. Nowa-
days, the experiments doing HBT at the RHIC/BNL accel-
erator have hundreds of participants. We could briefly sum-
marize the experiment by informing that it consisted of two
mirrors, each one focusing the light from a star onto a photo-
multiplier tube. An essential ingredient of the device was the
correlator, i.e., an electronic circuit that received the signals
from both mirrors and multiplied them. As Hanbury-Brown
himself described it, they “ ... collected light as rain in a
bucket ... ”, there was no need to form a conventional im-
age: the (paraboloidal) telescopes used for radio-astronomy
would be enough, but with light-reflecting surfaces. The
necessary precision of the surfaces was governed by max-
imum permissible field of view. The draw-back they had to
face in the first years was the skepticism of the community
about the correctness of the results. Some scientists consid-
ered that the observation could not be real because it would
violate Quantum Mechanics. In reality, in 1956, helped by
Purcell [3], they managed to show that it was the other way
round: not only the phenomenon existed, but it also followed
from the fact that photons tended to arrive in pairs at the
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would be enough, but with light-reflecting surfaces. The
necessary precision of the surfaces was governed by max-
imum permissible field of view. The draw-back they had to
face in the first years was the skepticism of the community
about the correctness of the results. Some scientists consid-
ered that the observation could not be real because it would
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two correlators, as a consequence of Bose-Einstein statis-
tics. A very interesting review about these early years was
written by Gerson Goldhaber[1], one of the experimentalists
responsible for discovering the identical particle correlation
in the opposite realm of HBT: the microcosmos of high en-
ergy collisions.

1.2 GGLP
In 1959, Goldhaber, Goldhaber, Lee and Pais performed
an experiment at the Bevalac/LBL, in Berkeley, CA, USA,
aiming at the discovery of the Ω0 resonance[4]. In the
experiment, they considered p̄p collisions, at 1.05 GeV/c.
They were searching for the resonance by means of the de-
cay Ω0 ! º+º°, by measuring the unlike pair, º+º°,
mass-distribution and comparing it with the ones for like
pairs, º±º±. Afterwards, they concluded that there was
not enough statistics for establishing the existence of Ω0.
Nevertheless, they observed an unexpected angular corre-
lation among identical pions! Later, in 1960, they success-
fully reproduced the empirical angular distribution by a de-
tailed multi-º phase-space calculation using symmetrized
wave functions for LIKE particles. Being so, they concluded
the effect was a consequence of the Bose-Einstein nature of
º+º+ and º°º°. They were not aware of the experiment
Hanbury-Brown and Twiss had performed previously. Thus,
they had discovered, by chance, the counterpart of the HBT
effect in high energy collisions. They parameterized the ob-
served correlation as:
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The Gaussian form in the above equation, and several of its
variant options, would be widely used in the years to come,
mainly by the experimentalists, due to the simplicity of the
emission source and analytical results allowed by this pro-
file. We will see which are the parameters and interpreta-
tions derived from it in a while.

1.3 Simple picture
At this point, it is natural to ask the question: How to under-
stand interferometry, or two-particle correlation, in a simple
way? First of all, we should anticipate that it follows from
considering two essential points: the adequate quantum sta-
tistics and chaotically emitting sources, which was already
emphasized by Bartknik and Rza̧żewski[5]. Let me illus-
trate it by a simple example of only two point sources, as
shown in Fig. 3:

The amplitude for the process can be written as
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where the (+) sign refers to bosons and the (°) one, to
fermions. In the above equation, ¡i corresponds to an
aleatory phase associated to each independent emission
(completely chaotic sources), i.e., one phase at random in

each emission. These phases are also considered to be inde-
pendent on the momenta k of the emitted quanta.
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Figure 3. Simplified picture: two point sources, I and II, emit
quanta considered as plane waves, which are observed in detec-
tors A and B, respectively, with momenta kµ

1 and kµ
2 . Since the

quanta are indistinguishable, there are two possible combinations
for this observation, illustrated by the two continuous and the two
dashed lines.
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with momenta k

1

and k
2

is given by

P
2

(k
1

, k
2

) = h|A(k
1

, k
2

)|2i =

=

1

2

[2 ± (ei(k1°k2).(x1°x2)he±i(¡1+¡2°¡0
1°¡0

2)i+ c.c.)]

= 1 ± cos[(k
1

° k
2

).(x
1

° x
2

)]. (3)

The emission being chaotic, we have to consider an av-
erage over random phases, i.e.,
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The two-particle correlation function can be written as
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where Pi(ki) is the single-inclusive distribution. It is es-
timated in a similar way as in the simultaneous detection
discussed above, i.e.,

A(ki) =
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In the above case, we would have he±i(¡1°¡2)i = ±¡1¡2 .
Since the source is supposed to be chaotic, the two aleatory
phases of emission would be equal only if they were emitted
at the same space-time point. However, since we are consid-
ering here that the probability of two simultaneous emission
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Fig. 1. Two-particle correlation function for π+π+ and π−π− pairs in 200
GeV/A collisions of S on Pb, and π+π+ pairs in collisions of 450 GeV p on
Pb [1].

invariant momentum difference Qinv = [(p1 − p2)2]1/2 of the two particles.
The characteristic falloff distance ∆q in momentum of the correlation func-
tion is of order 50 MeV/c for pions; the length h̄/∆q, which is ∼ 4 fm, is
basically a measure of the size of the source of the final state pions, the
size of the source when the pions no longer interact strongly with other
particles. Also shown in Fig. 1, for comparison, is the correlation function
for pairs of π+ for 450 GeV protons on Pb, which, being broader, indicates

Baym 1997
N44 1993

• Space-time structure of 
nuclear collisions
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inelastic cross section, and the constituent momenta are
taken at pp = pA/A.

The factor R(x), with x =
q
s+A

2
m

2
p � 2

p
sẼA and

ẼA the centre of mass product nucleus energy, is a phase
space correction that we define as in [46]. This becomes
necessary in order to extend the coalescence analysis
down to near-threshold collision energies, important for
the astrophysics as well as for low energy laboratory data.
Details on the derivation of R(x) are given in App. C.

BA, the coalescence factor, needs to be extracted from
accelerator data. However, experimental information on
d̄ and 3He production is scarce and, in the most part,
limited to AA or pA collisions. For pp collisions, the most
relevant system for CR astrophysics, no quantitative data
exists for pp ! 3He, and the data for pp ! d̄ is sparse.

Faced with this problem, previous estimates [12–16] of
the secondary CR d̄ and 3He flux made two key simpli-
fying assumptions:

1. Coalescence parameters used to fit pp ! d̄ data
were translated directly to pp ! 3He. More pre-
cisely, the coalescence factor BA was converted to
a coalescence momentum pc, via

A

m

A�1
p

✓
4⇡

3
p

3
c

◆A�1

= BA. (7)

The value of pc found from pp ! d̄ accelerator data
was then assumed to describe pp ! 3He.

2. The same coalescence momentum was sometimes
assumed to describe both pA ! d̄ and pp ! d̄.

In what follows we give theoretical and empirical evi-
dence, suggesting that both assumptions may be incor-
rect. To do this, we make an excursion into the physics
of coalescence.

The role of the factor BA is to capture the probability
for A nucleons produced in a collision to merge into a
composite nucleus. It is natural for the merger probabil-
ity to scale as [47–49]

BA / V

1�A
, (8)

where V is the characteristic volume of the hadronic
emission region. A model of coalescence that realises
the scaling of Eq. (8) was presented in Ref. [17]. A key
observation in [17] is that the same hadronic emission
volume is probed by Hanbury Brown-Twiss (HBT) two-
particle correlation measurements [18]. Both HBT data
and nuclear yield measurements are available for AA and
pA systems, allowing a test of Eq. (8).

Ref. [17] proposed the following formula for the coales-
cence factor,

B3 =
(2⇡)3

4
p
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. (9)

Here, mt is the transverse mass and Ri are the mt-
dependent HBT scales characterising the collision. For
concreteness we focus on A = 3, but the treatment of
A = 2 is analogous. The quantity hC3i expresses the
finite support of the 3He wave function. It may be esti-
mated via
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where b3 ⇡ 1.75 fm is the 3He nucleus size. For pt .
1 GeV, setting Ri ⇡ R, we have
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The extension to deuterium, with nucleus size b2 =
3.2 fm, is given by
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The coalescence factor in AA, pA, and pp collisions,
presented w.r.t. HBT scale deduced for the same sys-
tems, is shown in Fig. 3. The data analysis entering into
making the plot is summarised in App. A. The data is
consistent with Eqs. (11) (bottom panel) and (12) (top
panel), albeit with large uncertainty.
HBT data for pp collisions [19, 20, 50] suggest R in the

range 0.5 � 1.2 fm, indicated by letters in both panels
of Fig. 3. For pp ! d̄, direct measurements from the
ISR [51–53] give

B

(pp)
2 = (0.75� 2.4)⇥ 10�2 GeV2

. (13)

As seen in the top panel of Fig. 3, this result is consistent
with the intersect of Eq. (12) with the specified range of
R. (As done in Refs. [13–15], we discard here the high-pt
data from Serpukhov [54] and only show it in Fig. 3 for
completeness. Details can be found in App. A.)
For pp ! 3He we do not have direct experimental in-

formation. We therefore extract a rough prediction of
B3, by taking the intersect of Eq. (11) with the two ends
of the relevant range for R. This gives the following order
of magnitude estimate:

B

(pp)
3 = (2� 20)⇥ 10�4 GeV4 (HBT� based),(14)

marked by the two horizontal dashed lines in the bottom
panel of Fig. 3.
Results from the ALICE experiment allow us to make

a preliminary test of Eq. (14). Ref. [55] reported 20 3He
and 20 t in the ALICE pp

p
s = 7 TeV run, corresponding

to luminosity L ⇡ 2.2 nb�1 with a pseudo-rapidity cut
|⌘| < 0.9 and with no further pt cut1. The pt-dependent

1 We thank Natasha Sharma for clarifying the experimental pro-
cedure.
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inelastic cross section, and the constituent momenta are
taken at pp = pA/A.

The factor R(x), with x =
q
s+A
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ẼA the centre of mass product nucleus energy, is a phase
space correction that we define as in [46]. This becomes
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The value of pc found from pp ! d̄ accelerator data
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for A nucleons produced in a collision to merge into a
composite nucleus. It is natural for the merger probabil-
ity to scale as [47–49]
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where V is the characteristic volume of the hadronic
emission region. A model of coalescence that realises
the scaling of Eq. (8) was presented in Ref. [17]. A key
observation in [17] is that the same hadronic emission
volume is probed by Hanbury Brown-Twiss (HBT) two-
particle correlation measurements [18]. Both HBT data
and nuclear yield measurements are available for AA and
pA systems, allowing a test of Eq. (8).

Ref. [17] proposed the following formula for the coales-
cence factor,
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Here, mt is the transverse mass and Ri are the mt-
dependent HBT scales characterising the collision. For
concreteness we focus on A = 3, but the treatment of
A = 2 is analogous. The quantity hC3i expresses the
finite support of the 3He wave function. It may be esti-
mated via
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The coalescence factor in AA, pA, and pp collisions,
presented w.r.t. HBT scale deduced for the same sys-
tems, is shown in Fig. 3. The data analysis entering into
making the plot is summarised in App. A. The data is
consistent with Eqs. (11) (bottom panel) and (12) (top
panel), albeit with large uncertainty.
HBT data for pp collisions [19, 20, 50] suggest R in the

range 0.5 � 1.2 fm, indicated by letters in both panels
of Fig. 3. For pp ! d̄, direct measurements from the
ISR [51–53] give
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2 = (0.75� 2.4)⇥ 10�2 GeV2
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As seen in the top panel of Fig. 3, this result is consistent
with the intersect of Eq. (12) with the specified range of
R. (As done in Refs. [13–15], we discard here the high-pt
data from Serpukhov [54] and only show it in Fig. 3 for
completeness. Details can be found in App. A.)
For pp ! 3He we do not have direct experimental in-

formation. We therefore extract a rough prediction of
B3, by taking the intersect of Eq. (11) with the two ends
of the relevant range for R. This gives the following order
of magnitude estimate:

B

(pp)
3 = (2� 20)⇥ 10�4 GeV4 (HBT� based),(14)

marked by the two horizontal dashed lines in the bottom
panel of Fig. 3.
Results from the ALICE experiment allow us to make

a preliminary test of Eq. (14). Ref. [55] reported 20 3He
and 20 t in the ALICE pp

p
s = 7 TeV run, corresponding

to luminosity L ⇡ 2.2 nb�1 with a pseudo-rapidity cut
|⌘| < 0.9 and with no further pt cut1. The pt-dependent

1 We thank Natasha Sharma for clarifying the experimental pro-
cedure.
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B2
• Works pretty well

• R
– !! 0.5 − 1.2 fm
– !( 1.25 − 1.58 fm
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B3
• Also works pretty 

well

• B3 prediction
– 2×10%& − 2×10%(

• Dangerous
– )* → ))
– B2 → ), →B3
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Anti-Helium events?
• Could explain 

some of the 
AMS events?

• Need the most 
optimistic yield 
value
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FIG. 12: Comparison to previous work. Top: d̄ flux. Bottom:
3He flux. We convert d̄/p and 3He/p ratios from Chardonnet
et al [12] using AMS02 p flux [41]. For Duperray et al [13] we
take the result including the direct pp ! 3He channel. For
Herms et al [16], the d̄ prediction is the same as in [14]; for
3He the upper thin line corresponds to their estimate allowing
pc(3He) > pc(d̄).

proton beam with targets of C, Al, Cu, and W,
giving B3 = (0.8 � 1.5) ⇥ 10�4 GeV4 for pt ' 1.8
GeV.

Appendix B: Comparison to previous work. Our d̄
and 3He CR flux prediction is compared to previous work
in the top and bottom panels of Fig. 12, respectively.
In what follows we present a detailed discussion of this
comparison.

Chardonnet et al [12] found pc = 0.058 GeV for d̄, cor-

responding to B2 ⇡ 1.7 ⇥ 10�3 GeV2. The analysis in-
cluded Serpukhov [54] and ISR [51–53] pp ! d̄ data, and
was based on p̄ cross sections from [39]. The choice of pc
was made to match the Serpukhov data, which yielded
the lowest value of pc (and thus of B2). We find that
fitting B2 to [54] gives a result that is lower by a factor

of ⇠ 5 than that needed to fit [52, 53] 3. As discussed in
App. A, we (and similarly [13, 15]) use the ISR data [51–
53] in Eq. (13), rather than the value found based on the
low CME, high-pt Serpukhov data [54]. To fully com-
pare our d̄ flux with [12], we need to modify our phase
space factor R(x) to match their di↵erent prescription.
We show the result in dotted line in Fig. 12, reproduc-
ing the expected factor of 5 between our d̄ flux and that
of [12].

For 3He, Ref. [12] simply used the same value of pc ob-
tained in the d̄ analysis to derive B3 ⇡ 2.3⇥ 10�6 GeV4.
In addition, direct 3He production was neglected and
only the pp ! t channel was considered. The net result
is a CR 3He flux lower by a factor of ⇠ 100 compared to
our prediction.

Duperray et al [13] (following [73]) found pc =

0.079 GeV for d̄, corresponding to B2 ⇡ 4.4⇥10�3 GeV2.
The analysis collected together pp and pA data sets in
a single statistical fit of pc. As Fig. 3 and Eq. (12) sug-
gest, this could pull the fit artificially to low B2, if the
underlying physics satisfies B

pA
2 < B

pp
2 . In fact, consid-

ering the ISR pp ! d̄ data [52, 53], the global fit of [13]
is systematically below the data by a factor of about 2
(see Fig. 1 in [13]). Restoring the factor of 2 gives a
result consistent with our Eq. (13) and, given the mod-
est di↵erence in pp ! p̄ parametrisation, reproduces the
di↵erence between our d̄ flux and that of [13].

Some more details: for the high rapidity ISR data [51],
we reproduce the result of [13] using their pp ! p̄ cross
section parametrisation, but we find that that parametri-
sation overestimates the pp ! p̄ data of [71] by a factor
of ⇠2. This may explain why the fit of [13] underesti-
mates [52, 53] while at the same time slightly overesti-
mating the highest pt data point of [51]. The need for a
careful treatment of pp ! p̄ cross section in analyzing [51]
was also noted in [73], who, however, extrapolated the
pp ! p̄ cross section fit derived in [71] to pt significantly
lower than it was made to describe. Moving to pA data,
our result for B2 derived from [58, 75] agrees with [13].
The main di↵erence between our d̄ analyses, therefore, is
that we do not enforce BpA

2 = B

pp
2 , such that the low B2

derived from [58, 75] does not control our Bpp
2 result.

For 3He, the pc = 0.079 GeV of [13] translates into
B3 ⇡ 1.5⇥10�5 GeV4, which was compared to the sparse
data from [58, 75]. Our parallel analysis summarised in
Fig. 11 gives consistent results. However, as can be made
clear by inspection of either of Fig. 11 here, Fig. 4 in [13],
or Tab. 2 in [58], the sparse data leaves room for roughly

3 Our result for B2 derived from the high rapidity ISR data [51] is
higher than that of [12] by a factor of about 7. This is explained
by our use of di↵erent pp ! p̄ cross section fits to analyze this
data set. As explained in Appendix A, the Tan&Ng [39] fit over-
estimates the high rapidity ISR p̄ yield [71] by a factor of ⇠ 2�3.
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Production of light nuclei and antinuclei in pp collisions ALICE Collaboration
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Fig. 9: Coalescence parameter (B2) of antideuterons in inelastic pp collisions at
p

s = 7 TeV (circles) compared
with the values measured at lower energies in pp [12, 13], gp [15], ep [51] (squares and hollow circles), and in
p–Cu and p–Pb collisions [1] (band at pT/A = 0 GeV/c).
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Fig. 10: Coalescence parameter (B2) of antideuterons in inelastic pp collisions at
p

s = 7 TeV (circles) compared
with EPOS (LHC), PYTHIA 8.2 (Monash tune) with and without color reconnection (CR), and an event mixing
procedure with the afterburner (lines).

As in the case of antideuterons, the coalescence parameter (B3) of 3He nuclei also exhibits a pT depen-
dence (Fig. 11 right), and can be reproduced with QCD-inspired event generators with a coalescence-
based afterburner [44]. Moreover, low pT values of B3 are compatible with those obtained in p–C, p–Cu,
and p–Pb collisions at Bevalac [1].
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Production of light nuclei and antinuclei in pp collisions ALICE Collaboration
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Fig. 11: Coalescence parameter (B3) of tritons and 3He nuclei (left panel) and their antinuclei (right panel) in
inelastic pp collisions at

p
s = 7 TeV. The Bevalac measurements in p–C, p–Cu, and p–Pb collisions [1] are not

given as a function of pT and are shown as vertical bands at pT/A = 0 GeV/c for comparison. Error bars and boxes
represent the statistical and systematic uncertainties, respectively, and dashed lines the values obtained with EPOS
(LHC) with the afterburner.

5.2 Integrated yields and deuteron-to-proton ratio

Unlike coalescence models, statistical hadronization models only provide predictions for integrated
yields. In this case, the integrated yields of light nuclei and the deuteron-to-proton ratio can add ad-
ditional constraints to these models and could therefore serve as a test for thermal-statistical behavior in
small systems at LHC energies.

To find the integrated yields, the measurements were extrapolated to the unmeasured pT region with a
statistical distribution that provides an exponential behavior at low pT and a power law behavior at high
pT (Figs. 5 and 7):

E
d3N
dp3 = gV

mT

(2p)3

⇣
1+(q�1)

mT

T

⌘ q
1�q

, (2)

where mT =
q

p2
T +m2 is the transverse mass, and gV , T , and q are free parameters. This distribution can

be derived from the Tsallis entropy [56, 57] and gives good description of the data in pp collisions [57].
It was preferred over the Levy-Tsallis used in previous work [11] as it provides a more stable description
of the measurements with a limited data set, as in the case of antideuterons for the center-of-mass energy
0.9 TeV or the 3He nuclei.

The systematic uncertainties of the integrated yields (dN/dy) and mean transverse momenta (hpTi) were
evaluated by shifting the data points up and then down by their uncertainties (i.e., assuming full corre-
lation between pT bins). Additionally, the data points were shifted coherently, in a pT-dependent way,
within their uncertainties to create maximally hard and maximally soft pT distributions. The values of
dN/dy and hpTi were reevaluated and the largest difference was taken as the systematic uncertainty.
Table 2 summarizes the resulting values for the different center-of-mass energies along with the extrap-
olation fraction due to the unmeasured pT regions. The uncertainty on the extrapolation was estimated
by using additional distributions including the Levy-Tsallis [58, 59] and Boltzmann distributions. The
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Coalescence-HBT relation
• Blum, Takimoto 1901.07088
– More general derivation
– Chaoticity parameter (!)

• More or less works

• Joint Yield-HBT data analysis 
should be done
– Pt
– centrality
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two correlators, as a consequence of Bose-Einstein statis-
tics. A very interesting review about these early years was
written by Gerson Goldhaber[1], one of the experimentalists
responsible for discovering the identical particle correlation
in the opposite realm of HBT: the microcosmos of high en-
ergy collisions.

1.2 GGLP
In 1959, Goldhaber, Goldhaber, Lee and Pais performed
an experiment at the Bevalac/LBL, in Berkeley, CA, USA,
aiming at the discovery of the Ω0 resonance[4]. In the
experiment, they considered p̄p collisions, at 1.05 GeV/c.
They were searching for the resonance by means of the de-
cay Ω0 ! º+º°, by measuring the unlike pair, º+º°,
mass-distribution and comparing it with the ones for like
pairs, º±º±. Afterwards, they concluded that there was
not enough statistics for establishing the existence of Ω0.
Nevertheless, they observed an unexpected angular corre-
lation among identical pions! Later, in 1960, they success-
fully reproduced the empirical angular distribution by a de-
tailed multi-º phase-space calculation using symmetrized
wave functions for LIKE particles. Being so, they concluded
the effect was a consequence of the Bose-Einstein nature of
º+º+ and º°º°. They were not aware of the experiment
Hanbury-Brown and Twiss had performed previously. Thus,
they had discovered, by chance, the counterpart of the HBT
effect in high energy collisions. They parameterized the ob-
served correlation as:

C(Q2

) = 1 + e°Q2r2
= 1 + e(q2

0°q2
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(1)
Q2

= °q2

= °(k
1

° k
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)

2

= M2

12

° (m
1

+ m
2

)

2 .

The Gaussian form in the above equation, and several of its
variant options, would be widely used in the years to come,
mainly by the experimentalists, due to the simplicity of the
emission source and analytical results allowed by this pro-
file. We will see which are the parameters and interpreta-
tions derived from it in a while.

1.3 Simple picture
At this point, it is natural to ask the question: How to under-
stand interferometry, or two-particle correlation, in a simple
way? First of all, we should anticipate that it follows from
considering two essential points: the adequate quantum sta-
tistics and chaotically emitting sources, which was already
emphasized by Bartknik and Rza̧żewski[5]. Let me illus-
trate it by a simple example of only two point sources, as
shown in Fig. 3:

The amplitude for the process can be written as

A(k
1

, k
2
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1p
2

[e°ik1.(xA°x1)ei¡1e°ik2.(xB°x2)ei¡2

± e°ik1.(xA°x2)ei¡0
2e°ik2.(xB°x1)ei¡0

1
], (2)

where the (+) sign refers to bosons and the (°) one, to
fermions. In the above equation, ¡i corresponds to an
aleatory phase associated to each independent emission
(completely chaotic sources), i.e., one phase at random in

each emission. These phases are also considered to be inde-
pendent on the momenta k of the emitted quanta.
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Figure 3. Simplified picture: two point sources, I and II, emit
quanta considered as plane waves, which are observed in detec-
tors A and B, respectively, with momenta kµ

1 and kµ
2 . Since the

quanta are indistinguishable, there are two possible combinations
for this observation, illustrated by the two continuous and the two
dashed lines.

The probability for a joint observation of the two quanta
with momenta k

1

and k
2

is given by
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The emission being chaotic, we have to consider an av-
erage over random phases, i.e.,
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The two-particle correlation function can be written as
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(5)
where Pi(ki) is the single-inclusive distribution. It is es-
timated in a similar way as in the simultaneous detection
discussed above, i.e.,

A(ki) =

1p
2

[e°ik1.(xA°x1)ei¡1± e°ik1.(xA°x2)ei¡2
]

P
1

(ki) = h|A(ki)|2i= 1

2

[2 ± eiki.(x1°x2)he±i(¡1°¡2)i+c.c.]

(6)

In the above case, we would have he±i(¡1°¡2)i = ±¡1¡2 .
Since the source is supposed to be chaotic, the two aleatory
phases of emission would be equal only if they were emitted
at the same space-time point. However, since we are consid-
ering here that the probability of two simultaneous emission



Conclusion
• The Coalescence-HBT relation provides an 

interpretation to the yield data.

• The predicted anti-helium yield is much higher than 
previously thought.

• Joint Coalescence-HBT analysis may further reduce the 
uncertainty (!" and centrality bins)
– Help predict the dark matter yield?

• Uncertainty in the secondary CR anti-nuclei could be 
significantly reduced.
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p–p, p–Λ and Λ–Λ correlations studied via femtoscopy in pp at
√

s = 7 TeV ALICE Collaboration
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Fig. 5: (Color online) Comparison of radii obtained for different charged particle multiplicity intervals in the

pp collision system at
√

s = 7 TeV [49, 50, 74]. The error bars correspond to statistical and the shaded regions to

the systematic uncertainties. The black point is the radius obtained in this analysis with p–p , p–Λ and Λ–Λ pairs,

while the gray bar corresponds to the range of covered mT in this analysis.

displayed in the right panel of Fig. 3 which is obtained using the source radius and the λ parameters from
this analysis and the scattering parameters from [15]. On the other hand these parameters and all those
corresponding to the gray-shaded area in Fig. 4 lead to a negative genuine Λ–Λ correlation function if the
Lednický model is employed. The total correlation function that is compared to the experimental data
is not negative because the impurities and secondaries contributions lead to a total correlation function
that is always positive. This means that the combination of large effective ranges and negative scattering
lengths translate into unphysical correlation functions, for small colliding systems as pp. This effect is
not immediate visible in larger colliding system such as Au–Au at

√
sNN = 200 GeV measured by STAR,

where the obtained correlation function does not become negative. This demonstrates that these scatter-
ing parameters intervals combined with the Lednický model are not suited to describe the correlations
functions measured in small systems. One could test the corresponding local potentials with the help of
CATS [52], since the latter does not suffer from the limitations of the Lednický model due to the employ-
ment of the asymptotic solution. On the other hand we have directly compared the correlation functions
obtained employing CATS and the Λ–Λ local potentials reported in [37] with the correlation functions
obtained using the corresponding scattering parameters and the Lednický model. For the typical source
radii of 1.3 fm the deviations are within 10%̇. This disfavours the region of negative scattering lengths
and large effective ranges for the Λ–Λ correlation.

This study is the first measurement with baryon pairs in pp collisions at
√

s = 7TeV, while other femto-
scopic analyses were conducted with neutral [74] and charged [50] kaon pairs and charged pion pairs [49]
with the ALICE experiment. The radius obtained from baryon pairs is found to be slightly larger that
that measured from meson-meson pairs at comparable transverse mass as shown in Fig. 5

6 Summary

This paper presents the first femtoscopic measurement of p–p , p–Λ and Λ–Λ pairs in pp collisions at√
s = 7 TeV. No evidence for the presence of mini-jet background is found and it is demonstrated that

this kind of studies with baryon–baryon and anti-baryon–anti-baryon pairs are feasible. With a newly
developed method to compute the contributions arising from impurities and weakly decaying resonances
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