An alternative coalescence model

J. Tjemsland

In collaboration with M. Kachelriess and S. Ostapchenko

Department of Physics Norwegian University of Science and Technology

Antideuteron 2019

(NTNU)

An alternative coalescence model

March 28, 2019

1 / 19

Overview

1 The coalescence model in momentum space

2 A Wigner function based coalescence model

Oetection prospects

(NTNU)

3

- < ∃ →

< 67 ▶

The coalescence model in momentum space

A Wigner function based coalescence model

Goals

- Include constraints on both momentum and space variables
- Include a quantum mechanical treatment
- Microphysical picture
- Evaluated per-event within the Monte Carlo

A Wigner function based coalescence model

Goals

- Include constraints on both momentum and space variables
- Include a quantum mechanical treatment
- Microphysical picture
- Evaluated per-event within the Monte Carlo

Starting points

- Nucleon capture process: $p + n \rightarrow d$
- Wigner function representation of the deuteron and nucleons

Wigner function properties

•
$$f^{W}(p,x) = \int \rho(x+y/2, x-y/2)e^{-ipy} dy$$

• $\int f^{W}(p,x)\frac{dp}{2\pi} = \rho(x,x) = P(x)$
• $\int f^{W}(p,x) dx = \rho(p,p) = P(p)$

Deuteron Wigner function:

$$\mathcal{D}(\vec{r},\vec{q}) = \int \mathrm{d}^{3}\xi \exp\left\{-\vec{q}\cdot\vec{\xi}\right\}\varphi_{d}(\vec{r}+\vec{\xi}/2)\varphi_{d}^{*}(\vec{r}-\vec{\xi}/2)$$

A (10) > A (10) > A

э

An expression for the deuteron yield

Antideuteron spectrum in the d frame (Scheibl and Heinz 1999)

$$\frac{\mathrm{d}^3 N_d}{\mathrm{d} P_d^3} = \frac{s}{(2\pi)^3} \int \mathrm{d}^3 r_d \int \frac{\mathrm{d}^3 q \,\mathrm{d}^3 r}{(2\pi)^3} \mathcal{D}(\vec{r},\vec{q}) f_p^{\mathrm{W}}(\vec{q},\vec{r}_+) f_n^{\mathrm{W}}(-\vec{q},\vec{r}_-),$$

All combinations that are allowed from the Pauli exclusion principle are given equal weights, (Mattiello et al. 1997).

$$s_d = \frac{3}{8}; \qquad s_{^3\mathrm{He}} = s_t = \frac{1}{12}.$$

 $f_p^W(\vec{q}, \vec{r}_+)$: Proton Wigner function $f_n^W(-\vec{q}, \vec{r}_-)$: Neutron Wigner function $\mathcal{D}(\vec{r}, \vec{q})$: Deuteron Wigner function

A new coalescence model I

Ansatz for nuleon Wigner functions:

$$f_{p}^{\mathrm{W}}(\vec{q},\vec{r}) = f_{n}^{\mathrm{W}}(\vec{q},\vec{r}) = (2\pi\sigma^{2})^{-3/2}g(\vec{q})\exp\left\{-\frac{r^{2}}{2\sigma^{2}}\right\}$$

$g(\vec{q})$: taken from the event generator σ : free parameter

Ansatz for deuteron wave function:

$$\varphi_d(\vec{r}) = \left(\pi d^2\right)^{-3/4} \exp\left\{-\frac{r^2}{2d^2}\right\}$$

 $r_{
m rms,d} = 1.96 \ {
m fm} \ ({
m Zhaba} \ 2017) \quad \Rightarrow d = 3.2 \ {
m fm} = 16 \ {
m GeV}^{-1}$

A new coalescence model II

Antideuteron formation model (yield in lab frame)

$$\begin{aligned} \frac{\mathrm{d}^3 N_d}{\mathrm{d} P_d^3} &= \frac{1}{\gamma} \frac{3\zeta}{(2\pi)^3} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \mathrm{e}^{-q^2 d^2} g(\vec{q}) g(-\vec{q}), \\ \zeta &\equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \leq 1. \end{aligned}$$

(NTNU)

-March 28, 2019 8 / 19

3

A new coalescence model III

The two nucleons merges with a probability

$$w=3\zeta e^{-q^2d^2},$$

where

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2}.$$

(NTNU)

A new coalescence model IV

Antihelium-3 and antitritium formation model (yield in lab frame)

$$\begin{split} \frac{\mathrm{d}^3 N_{\mathrm{He}}}{\mathrm{d} P_{\mathrm{He}}^3} &= \frac{64s\zeta}{\gamma(2\pi)^3} \int \frac{\mathrm{d}^3 p_1}{(2\pi)^3} \frac{\mathrm{d}^3 p_2}{(2\pi)^3} g(-\vec{p}_2 - \vec{p}_3) g(\vec{p}_2) g(\vec{p}_3) \mathrm{e}^{-b^2 P^2},\\ \zeta &= \left(\frac{2b^2}{2b^2 + 4\sigma^2}\right)^3,\\ \rho^2 &= \frac{1}{3} \left[(\vec{p}_1 - \vec{p}_2)^2 + (\vec{p}_2 - \vec{p}_3)^2 + (\vec{p}_2 - \vec{p}_3)^2 \right] = \frac{2}{3} \left[\vec{p}_2^2 + \vec{p}_3^2 + \vec{p}_1 \cdot \vec{p}_2 \right]. \end{split}$$

 $b_{^{3}\text{He}} = 1.96 \text{ fm}; \ b_{t} = 1.76 \text{ fm}; \ s = 1/12$

March 28, 2019

3

10 / 19

Improving the deuteron wave function

Improving the deuteron wave function

pp collisions at $\sqrt{s} = 0.9 \text{ TeV}$ with $\sigma = 7 \text{ GeV}^{-1}$ and $p_0 = 0.2 \text{ GeV}$.

(NTNU)

Parameter estimation

- One can try to capture the hadronisation length L_N by defining the nucleon Wigner functions in the lab frame.
- $L_N \sim \gamma L_0$
- $\sigma_{\parallel(e^{\pm})} \sim L_0 \sim R_p \sim 5 \text{ GeV}^{-1}$ • $\sigma_{\perp(e^{\pm})} \sim \Lambda_{\text{QCD}} \sim \sigma_{\parallel(e^{\pm})}$ • $\sigma_{(pp)}^2 = \sigma_{(e^{\pm})}^2 + \sigma_{(\text{geom})}^2$

 $\Rightarrow \sigma_{pp} \sim \sqrt{2} \sigma_{e^{\pm}} \sim 7 \text{ GeV}^{-1}$

Parameter estimation

- One can try to capture the hadronisation length L_N by defining the nucleon Wigner functions in the lab frame.
- $L_N \sim \gamma L_0$

•
$$\sigma_{\parallel (e^{\pm})} \sim L_0 \sim R_p \sim 5 \ {
m GeV}^{-1}$$

•
$$\sigma_{\perp(e^{\pm})} \sim \Lambda_{\text{QCD}} \sim \sigma_{\parallel(e^{\pm})}$$

•
$$\sigma_{(pp)}^2 = \sigma_{(e^{\pm})}^2 + \sigma_{(geom)}^2$$

 $\Rightarrow \sigma_{pp} \sim \sqrt{2} \sigma_{e^\pm} \sim 7 \; {\rm GeV^{-1}}$

$$\Rightarrow \zeta = \frac{d^2}{d^2 + 4\tilde{\sigma}_{\perp}^2} \sqrt{\frac{d^2}{d^2 + 4\sigma_{\parallel}^2}} \quad \text{where} \quad \tilde{\sigma}_{\perp} = \frac{\sigma_{\perp}}{\sqrt{\cos^2\theta + \gamma^2 \sin^2\theta}}$$

Comparison with experimental data

We have considered mainly two experiments:

- pp collisions at $\sqrt{s} = 0.9, 2.76$ and 7 TeV (ALICE Collaboration 2018).
- e^+e^- annihilations at the Z resonance (ALEPH Collaboration 2006).

Results

- $\bullet\,$ Two-Gaussian wave function, constant ζ
 - $\sigma_{pp} = (6.4 \pm 0.2) \text{ GeV}^{-1} = \sqrt{2}(4.5 \pm 0.2) \text{ GeV}^{-1}$
 - $\sigma_{e^{\pm}} = 5.0^{+1.2}_{-0.9} \text{ GeV}^{-1}$
- $\bullet\,$ Two-Gaussian wave function, beam dependent ζ

•
$$\sigma_{pp} = (7.0 \pm 0.1) \text{ GeV}^{-1} = \sqrt{2}(4.9 \pm 0.1) \text{ GeV}^{-1}$$

•
$$\sigma_{e^{\pm}} = 5.2^{+0.9}_{-0.6} \text{ GeV}^{-1}$$

13 / 19

Best combined fit to the ALICE antideuteron data

(NTNU)

Best fit to the ALICE helium-3 data

(NTNU)

Detection prospects for antideuterons from DM annihilations

• Two-zone propagation model with MED parameters, Einasto profile and $\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ neglecting energy loss (Fornengo et al. 2013)

March 28, 2019 16 / 19

Summary

- The existing state of the art coalescence model is purely phenomenological
- Wigner function based coalecence model:

$$\frac{\mathrm{d}^3 N_d}{\mathrm{d} P_d^3} = \frac{1}{\gamma} \frac{3\zeta}{(2\pi)^3} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \mathrm{e}^{-q^2 d^2} g(\vec{q}) g(-\vec{q})$$

- It includes constraints on both momentum and space variables, has a semi-classical treatment and a microphysical picture
- The new model does not change current detection prospects

17 / 19

References I

- Scheibl, Ruediger and Ulrich Heinz (1999). "Coalescence and Flow in Ultra-Relativistic Heavy Ion Collisions". In: *Physical Review C* 59.3, pp. 1585–1602.
- Mattiello, R. et al. (1997). "Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV". In: *Physical Review C* 55.3, pp. 1443–1454.
- Zhaba, V. I. (2017). "Deuteron: properties and analytical forms of wave function in coordinate space". In: arXiv: 1706.08306 [nucl-th]. Collaboration, ALICE (2018). "Production of Deuterons, Tritons, ³He Nuclei and Their Anti-Nuclei in Pp Collisions at $\sqrt{s} = 0.9, 2.76$ and 7 TeV". In: *Physical Review C* 97.2.
- Collaboration, ALEPH (2006). "Deuteron and Anti-Deuteron Production in e+e- Collisions at the Z Resonance". In: *Physics Letters B* 639.3-4, pp. 192–201.

References II

Fornengo, N. et al. (2013). "Dark Matter Searches with Cosmic Antideuterons: Status and Perspectives". In: *Journal of Cosmology and Astroparticle Physics* 2013.09, pp. 031–031.