Search for Cosmic-Ray Antideuterons with BESS-Polar II

Kenichi Sakai NASA/GSFC/CRESST/UMBC

For BESS collaboration

Antideuteron 2019 University of California Los Angeles 27-29 March 2019

BESS collaboration

BESS is US-Japan collaborative program.

J. W. Mitchell (PI, US, NASA/GSFC)

A. Yamamoto (PI, Japan, KEK)

The BESS Project

2 BESS-Polar I and II experiment

BESS-Polar I & II flights were carried out over Antarctica.

	BESS-Polar I	BESS-Polar II
Launch date	Dec. 13 th ,2004	Dec. 23 rd , 2007
Observation time	8.5 days	24.5 days
Cosmic-ray observed	9 x 10 ⁸ events	4.7 x 10 ⁹ events
Flight altitude	37~39km (5~4g/cm²)	~36km (6~5g/cm²)

3 BESS spectrometer

BESS-Polaressp_ext_PaperRB01_J_DevTest13Ext.root Event Time: 12.02.57.096 Run: 000 Event: 006578 (C3) Size: 2887 FADC: 1934 FEND: 904 Trigger: 001001011 JET: 71 IDC: 4 UTOF: 1 MTOF: 2 LTOF: 1

Event display with reconstructed proton track is shown.

Rigidity (MDR:200GV)

Solenoid: Uniform field (φ=0.9m, B=0.8T) Thin material (2.4 g/cm²/wall)

Drift chamber: Redundant hits (σ ~150µm, 32~48+4hits)

Charge, Velocity TOF, Chamber: dE/dx measurement (Z = 1, 2, ...)

TOF: $1/\beta$ measurement (σ ~1,2%)

$$m = ZeR\sqrt{1/\beta^2 - 1}$$

The BESS Project

4 Antiparticle Results from BESS

Antiproton

Antihelium

BESS-Polar II PRL 108, 051102 (2012)

New results of very-low energy Antiproton spectrum by using Middle TOF

Search for Antideuteron This work in BESS-Polar II data

Antideuteron

BESS 97-00

PRL 95, 081101 (2005)

Very-low energy antiproton spectrum

5 Minimizing Material in particle path

To minimize material in spectrometer: New detector (Middle TOF)

Antiproton Analysis

6 Antiproton identification

Antiproton Analysis

Antiproton flux with UTOF-MTOF trigger events

New UM and UL absolute differential energy spectra of antiprotons measured by BESS-Polar II together with earlier published BESS-Polar II UL antiproton spectrum

- UL antiproton flux: 0.2-3.5 GeV
- UM antiproton flux: 0.1-0.7 GeV

Antiproton Analysis

8 New antiproton flux in BESS-Polar II

New absolute differential energy spectra of antiprotons measured by BESS-Polar II together with earlier published BESS-Polar II UL antiproton spectrum

 New antiproton flux shows good consistency with secondary antiproton spectra.

Antideuteron search

9 Selection criteria of Dbar analysis (Pre-Selection and Fiducial)

Ρ	bar
	Nai

Pre-selection	UL
Number of long track	N _{longTK} = 1
Noise event veto	$\rm N_{SEG} \leq 20$
Hits in TOF	N _{TOFU,L} = 1
Albedo rejection	β > 0
Rigidity	Rgt ≠ 0
χ^2 in trajectory fitting	$\chi_{r\phi}^{2} > 0$

Fiducial-selection	UL
Expect hits in JET	$egin{array}{l} N_{expect} \geqq 32, \ N_{center} > 0 \end{array}$
X hit position in TOF	$ X_{TRU,L} \leq 50mm$
Z hit position in TOF	Z _{TKU,L} < 450mm
TOF mask	or: 7, 15
Swivel cut	

Dbar

Pre-selection	UL
Number of long track	N _{longTK} = 1
Noise event veto	$N_{SEG} \leq 20$
Hits in TOF	N _{TOFU,L} = 1
Albedo rejection	β > 0
Rigidity	Rgt ≠ 0
χ^2 in trajectory fitting	$\chi_{r\phi}^{2} > 0$
Reject noisy IDC hits	$N_{IDCU,L} \ge 3$

Fiducial-selection	UL
Expect hits in JET	$egin{array}{l} N_{expect} \geqq 32, \ N_{center} \geqq N_{expect} imes 0.65 \end{array}$
X hit position in TOF	$ X_{TRU,L} \leq 50mm$
Z hit position in TOF	Z _{TKU,L} < 450mm
TOF mask	or: 7, 15
Swivel cut	

10 Selection criteria of Dbar analysis (Quality cut)

Pbar

Quality cut	UL
[1] Charge selection	dE/dx_{UTOF} = pbar (A.4)
[2] Charge selection	$dE/dx_{LTOF} = pbar$ (A.4)
[3] Mass selection	$1/\beta$ = pbar (A.4)
[4] Z reconstruction	$\begin{array}{l} \chi_z^2 > 0, \chi_z^2 \leqq 4 \\ N_{\text{Vernier}} \geqq 4 \end{array}$
[5] QDC hazard	
[6] Z track consistency	$\begin{array}{l} dZ_{\text{UTOF}} > 0, dZ_{\text{LTOF}} > 0 \\ dZ_{\text{UTOF}} \leqq 50 \\ dZ_{\text{LTOF}} \leqq 50 \end{array}$
[7] rø track quality	$\begin{array}{l} {C_{r\varphi}}^2 \leqq 3 \\ {L_{path}} \geqq 500 \\ {N_{JET}}/{N_{expect}} \mathrel{>=} 0.6 \\ {N_{drop}}/{N_{expect}} \mathrel{<=} 0.25 \\ {\Delta_{RT}} \leqq 0.015 \end{array}$
	111
Agei Fiduciai	acz > -385, acz < 410
Gap cut	acz ~ -128, 147
Threshold	$\begin{array}{l} \Sigma_{ m agel} \leq 340 \ \Sigma_{ m agel} \leq 1000 \ (1/eta{>}1.2, { m Rgt} < 1.8 \) \end{array}$

Dbar

Quality cut	UL
[1] Charge selection	$dE/dx_{UTOF} = dbar (A.4)$
[2] Charge selection	$dE/dx_{LTOF} = dbar$ (A.4)
[3] Mass selection	$1/\beta$ = dbar (A.4)
[4] Z reconstruction	$\begin{array}{l} \chi_z^2 > 0, \chi_z^2 \leqq 4 \\ N_{Vernier} \geqq 4 \end{array}$
[5] QDC hazard	
[6] Z track consistency	$\begin{array}{l} \text{dZ}_{\text{UTOF}} > 0, \text{dZ}_{\text{LTOF}} > 0 \\ \text{dZ}_{\text{UTOF}} \leqq 50 \\ \text{dZ}_{\text{LTOF}} \leqq 50 \end{array}$
[7] rφ track quality	$\begin{array}{l} {C_{r\phi}}^2 \leqq 3 \\ {L_{path}} \geqq 500 \\ {N_{JET}}/{N_{expect}} \mathrel{>=} 0.75 \\ {N_{drop}}/{N_{expect}} \mathrel{<=} 0.25 \\ {\Delta_{RT}} \leqq 0.015 \end{array}$
Agel cut	UL
Agel Fiducial	acx > -330, acx < 330 acz > -385, acz < 410
Gap cut	acz ~ -128, 147
Threshold	$\Sigma_{\rm agel} \leq 100$

11 Other normalization factor and efficiencies

Pb	ar
Normalization factor	
trigger efficiency	0.9987*0.9987
track-reconstruction efficiency	0.987
probability of events without accidental tracks	0.9630
probability of events without accidental TOF hits	0.997*0.996
Livetime	1.2720e+06

- In general, selection criteria of Dbar analysis are identical to that of Pbar analysis.
- More strict cut of JET/IDC chamber was employed for selecting the good tracking since dbar analysis is a detection study.
- Particle identification with mass and dE/dx band cut was optimized by using deuteron sample instead of proton sample.
- Higher ACC threshold was employed to prevent background contamination.

12 Particle identification

dE/dx

1/β

13 ACC rejection power

Pbar (Threshold=340)

Dbar (Threshold=100)

14 Antideuteron search

The $1/\beta_{UL}$ VS rigidity plot and antideuteron's selection band.

• Signal region for antideuteron

Excluding 3.5 σ region from antiproton center to prevent antiproton contamination

15 Antideuteron search

The $1/\beta_{UL}$ VS rigidity plot and antideuteron's selection band.

• Signal region for antideuteron

Excluding 3.5 σ region from antiproton center to prevent antiproton contamination

 No antideuteron candidate in BESS-Polar II data

16 Upper limit calculation

$$\Phi_{\bar{d}} dE = \frac{N_{obs}}{S\Omega \cdot T_{live}} \frac{1}{\varepsilon_{single} \cdot \varepsilon_{Q-ID}} \frac{1}{\eta} \frac{1}{(1 - \delta_{sys})}$$

- N_{obs} : Number of Observed candidate = 3.1
 - $S\Omega$: Geometrical acceptance
- T_{live} : Live time
- ε_{single} : Single track efficiency
- ε_{Q-ID} : Detector selection efficiencies
 - η : Survival fraction through atmosphere
 - δ_{sys} : Systematic error
- Since no antideuteron was found, 3.1 was taken as the number of the observed antideuteron events for the calculation of 95% C.L. upper limit.
- In order to obtain the most conservative limit, the minimum value of the effective exposure factors $(S\Omega \cdot T_{live} \cdot \varepsilon_{single} \cdot \varepsilon_{Q-ID} \cdot \eta)$ was used.

Extended Agel efficiency by using proton $\Phi_{\bar{d}} dE = \frac{N_{obs}}{S\Omega \cdot T_{line}} \frac{1}{\varepsilon_{oil}}$ 17

 $1/\beta$ VS rgt

Agel efficiency

 N_{obs}

Rgt = 3.0GV $\rightleftharpoons \beta \gamma = 1.6$ (deuteron), 3.2 (proton)

Proton efficiency is miscalculated around lower limit of 0.11GeV $\neq \beta \gamma = 0.5$.

18 Detector efficiencies

Dbar

Pbar

Kinetic energy (GeV/N)

Kinetic energy (GeV/N)

Antideuteron Analysis

Survival prob in the residual atmosphere 20

21 Background

 $\Phi_{\bar{d}} \ dE = \frac{N_{obs}}{S\Omega \cdot T_{live}} \frac{1}{\varepsilon_{single} \cdot \varepsilon_{Q-ID}} \frac{1}{\eta} \frac{1}{(1 + \varepsilon_{Q-ID})^2} \frac{1}{($

22 Systematic error

Pbar

$\Phi_{\bar{d}} \ dE = \frac{N_{obs}}{S\Omega \cdot T_{live}} \frac{1}{\varepsilon_{single} \cdot \varepsilon_{Q-ID}} \frac{1}{\eta} \frac{1}{(1 - \delta_s)}$

Dbar

Antideuteron Analysis

23 Upperlimit of Antideuteron flux

Upper limit on antideuteron flux measured by BESS-Polar II together with earlier published BESS97-00 antideuteron upper limit

 $J(d) < 5.9 \text{ x } 10^{-5} \\ (m^2 \text{sr sec GeV/n})^{-1} \\ (95\% \text{C.L.})$

• Compared with the data taken in the solar minimum (BESS97), order of magnitude improvement has been achieved.

 $\Phi_{\bar{d}} dE = \frac{N_{obs}}{SO_{-}T_{+}} \frac{1}{SO_{-}T_{+}} \frac{1}{SO_$

Antideuteron search

- No antideuteron candidate in BESS-Polar II.
- New upper limit $J(d) < 5.9 \times 10^{-5} \text{ (m}^2 \text{sr sec GeV/n)}^{-1} \text{ (95\%C.L.)}$
 - 3.1 was taken as the number of the observed antideuteron events for the calculation of 95% C.L. upper limit.
 - In order to obtain the most conservative limit, the effective exposure factors was reduced by using with the systematic error (dsys = 10.3%).
- Compared with the data taken in the solar minimum (BESS97), order of magnitude improvement has been achieved.