Summary of Hiroyuki Nakayama's Thesis

Z. Liptak B -> $X_s l^+l^-$ meeting 12/6/2017

Outline

- 1. Background
 - a. Sensitivity to Physics Parameters
- 2. Analysis Methods
 - a. Semi-inclusive samples
 - b. Analysis techniques
 - c. Backgrounds and suppression
- 3. Results
 - a. Observed Events
 - b. Simple Case
 - c. Sum-up method

Sensitivity to Physics Parameters

$$H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu), \qquad \qquad \mathcal{O}_2 = (\bar{s}, \mathcal{O}_3) = (\bar{s}, \mathcal{O}_4) = (\bar{s}, \mathcal{O}_5) = ($$

$$\begin{aligned} \mathcal{O}_{1} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\beta})(\bar{c}_{\beta}\gamma^{\mu}Lb_{\alpha}), \\ \mathcal{O}_{2} &= (\bar{s}_{\alpha}\gamma_{\mu}Lc_{\alpha})(\bar{c}_{\beta}\gamma^{\mu}Lb_{\beta}), \\ \mathcal{O}_{3} &= (\bar{s}_{\alpha}\gamma_{\mu}Lb_{\alpha})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Lq_{\beta}), \\ \mathcal{O}_{4} &= (\bar{s}_{\alpha}\gamma_{\mu}Lb_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{5} &= (\bar{s}_{\alpha}\gamma_{\mu}Lb_{\alpha})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\beta}), \\ \mathcal{O}_{6} &= (\bar{s}_{\alpha}\gamma_{\mu}Lb_{\beta})\sum_{q=u,d,s,c,b}(\bar{q}_{\beta}\gamma^{\mu}Rq_{\alpha}), \\ \mathcal{O}_{7} &= \frac{e}{16\pi^{2}}\bar{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L+m_{b}R)b_{\alpha}F^{\mu\nu}, \\ \mathcal{O}_{8} &= \frac{g}{16\pi^{2}}\bar{s}_{\alpha}\sigma_{\mu\nu}(m_{s}L+m_{b}R)T^{a}_{\alpha\beta}b_{\beta}G^{a\mu\nu}, \\ \mathcal{O}_{9} &= \frac{e}{16\pi^{2}}(\bar{s}_{\alpha}\gamma^{\mu}Lb_{\alpha})(\bar{\ell}\gamma_{\mu}\ell), \\ \mathcal{O}_{10} &= \frac{e}{16\pi^{2}}(\bar{s}_{\alpha}\gamma^{\mu}Lb_{\alpha})(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell), \end{aligned}$$

Sensitivity to Physics Parameters

 $\mathcal{O}_1 = (\bar{s}_{\alpha} \gamma_{\mu} L c_{\beta}) (\bar{c}_{\beta} \gamma^{\mu} L b_{\alpha}),$ $\mathcal{O}_2 = (\bar{s}_{\alpha} \gamma_{\mu} L c_{\alpha}) (\bar{c}_{\beta} \gamma^{\mu} L b_{\beta}),$ $H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu),$ $\mathcal{O}_3 = (\bar{s}_{\alpha} \gamma_{\mu} L b_{\alpha}) \sum (\bar{q}_{\beta} \gamma^{\mu} L q_{\beta}),$ q=u.d.s.c.b $\mathcal{O}_4 = (\bar{s}_{\alpha} \gamma_{\mu} L b_{\beta}) \sum (\bar{q}_{\beta} \gamma^{\mu} L q_{\alpha}),$ q=u.d.s.c.b $\mathcal{O}_5 = (\bar{s}_{\alpha} \gamma_{\mu} L b_{\alpha}) \sum (\bar{q}_{\beta} \gamma^{\mu} R q_{\beta}),$ q=u,d,s,c,bX $I^{+}I^{-}$: sensitive to $C_{i}(\mu)$ $\mathcal{O}_6 = (\bar{s}_{\alpha} \gamma_{\mu} L b_{\beta}) \sum (\bar{q}_{\beta} \gamma^{\mu} R q_{\alpha}),$ for: q=u,d,s,c,bEM Operator $\mathcal{O}_7 = \frac{e}{16\pi^2} \bar{s}_{\alpha} \sigma_{\mu\nu} (m_s L + m_b R) b_{\alpha} F^{\mu\nu},$ $\mathcal{O}_8 = \frac{g}{16\pi^2} \bar{s}_\alpha \sigma_{\mu\nu} (m_s L + m_b R) T^a_{\alpha\beta} b_\beta G^{a\mu\nu},$ $\mathcal{O}_9 = \frac{e}{16\pi^2} (\bar{s}_\alpha \gamma^\mu L b_\alpha) (\bar{\ell} \gamma_\mu \ell),$ Electroweak Penguin Vector Component Electroweak Penguin Axial Component $\mathcal{O}_{10} = \frac{e}{16\pi^2} (\bar{s}_{\alpha} \gamma^{\mu} L b_{\alpha}) (\bar{\ell} \gamma_{\mu} \gamma_5 \ell),$

Detecting New Physics

Deviations from Standard Model predictions could be indicative of new physics:

$$C_i(\mu)_{exp} = C_i(\mu)_{SM} + C_i(\mu)_{BSM}$$

Branching fractions in the dileption mass region $M^2_{I+I-} < (6 \text{ GeV})^2$ range has a clean theoretical value, and thus is of particular interest.

$$\frac{d\Gamma(b \to s\ell^+\ell^-)}{d\hat{s}} = \left(\frac{\alpha_{EM}}{4\pi}\right)^2 \frac{G_F^2 m_b^5 |V_{ts}^* V_{tb}|^2}{48\pi^3} (1-\hat{s})^2 \\ \times \left[(1+\hat{s})(|C_9|^2 + |C_{10}|^2) + 4(1+2/\hat{s})|C_7|^2 + 12\text{Re}(C_7 C_9^*) \right]$$

where \hat{s} is defined as $\hat{s} = M_{\ell^+\ell^-}^2/m_{b,pole}^2$.

Forward-backward asymmetry is also dependent on M^2_{I+I-} and thus is also of interest.

Semi-inclusive Analysis Approach

 $B \to X_s l^+ l^-$ decays included in the analysis contain:

- Dilepton pair
- K[±] or K_S
- Up to 4 π s (at most one can be neutral)

18 states possible

Provides strong kinematic discrimination against bg wrt fully-inclusive approach* using beam-energy contrained mass and ΔE between the reconstructed B and the beam energy.

According to MC, the samples included cover ~62% of the X_s decay states (41% K[±], 21% K_S) with K_L expected to provide similar numbers and ~18% unaccounted for.

*: I don't believe this is explained in the text

Background Suppression

- Backgrounds suppressed with a Fisher discriminant (provide link to citation [46])
- Largest bg source is random combinations from semileptonic B decays
 - $(b \rightarrow c \rightarrow s, d \text{ decay chain})$
 - Rejected with Fisher variable constructed from:

Likelihood cuts

- Use likelihood ratio with 6 variables to select most signal-like B
 - ΔE
 - $\cos(\theta_{\rm B})$ ($\theta_{\rm B}$ = angle between B flight direction and e⁻ beam)
 - F_{miss} (same variable used in bg suppression)
 - F_{FW} (discriminant characterizing event topology)
 - $\circ \chi^2_{VTX}/NDF$
 - $\circ |\Delta z_{|+|-}|$
- Log-likelihoods calculated and the candidate in each event with the largest ratio $L_{sig}/(L_{sig}+L_{bg})$ is retained

According to MC, probability that all daughters are selected and assigned correctly is 80% in B $\to X_{\rm s} l^+ l^-$

Maximum Likelihood Fit

In (very) brief:

PDF component	Used function	fix or float	
$X_s \ell^+ \ell^-$ fit			
Signal (sig)	Gaussian	$N_{\rm sig}$:float, shape:fix	
Background (bkg)	ARGUS	N _{bkg} :float, shape:float(common)	
Peaking background (pkg)	histogram shape	$N_{\rm pkg}$:fix	
Peaking background from higher psi (psi)	Gaussian	$N_{\rm psi}$:fix, shape:fix	
Self cross-feed (scf)	histogram shape	$N_{\rm scf}/N_{\rm sig}$:fix	
$X_s e \mu$ fit			
Background (bkg, $e\mu$)	ARGUS	N _{bkg,eµ} :float, shape:float (common)	
Peaking background (pkg, $e\mu$)	histogram shape	$N_{ m pkg,e\mu}$:fix	

- Peaking background refers to:
 - Charmonium peaking background: (note: according to Hiro, this is the major complication)
 - $\blacksquare \quad B \to J/\psi X_s \text{ or } B \to \psi(2S) X_s \text{ where the } J/\psi \text{ or } \psi(2S) \text{ decays to } I^+I^-$
 - Higher ψ resonances (ψ(3770), ψ(4040), ψ(4160))
 - Hadronic peaking background:
 - $B \rightarrow X_s hh$, hadrons mis-ID'd as leptons
 - $\blacksquare \quad B \to X_s hlv \text{ with a mis-ID'd hadron}$

Systematics

Overall largest contribution \rightarrow

Source	$X_s e^+e^-$	$X_s \mu^+ \mu^-$
Signal Gaussian shape	± 0.3	± 0.1
$J/\psi, \psi(2S)$ peaking background	±1.2	± 0.9
Higher ψ peaking background	± 0.9	± 0.9
Hadronic peaking background	+0.4 -0.5	$+0.2 \\ -0.3$
Self Cross-feed error	± 0.1	± 0.1
Signal yield subtotal	± 1.6	± 1.3
Tracking efficiency	± 3.6	± 3.6
Lepton identification efficiency	± 2.1	± 2.2
Kaon identification efficiency	± 0.4	± 1.0
π^{\pm} identification efficiency	± 3.4	± 3.0
$K_{\rm S}^0$ efficiency	± 0.9	± 0.9
π^0 efficiency	± 0.5	± 0.5
\mathcal{R} cut efficiency	± 5.3	± 2.6
Detector model subtotal	±7.6	± 6.0
Fermi motion model	-4.9 + 1.3	-2.0 + 0.6
$\mathcal{B}(B \to K\ell^+\ell^-)$	± 6.0	± 6.8
$\mathcal{B}(B \to K^* \ell^+ \ell^-)$	± 6.8	± 6.8
K^*-X_s transition	-6.8 + 2.3	-7.1 + 2.7
Hadronization	± 5.8	± 5.5
Missing modes	± 1.7	± 1.7
Signal model subtotal	$^{+11.2}_{-13.7}$	$^{+11.5}_{-13.4}$
Monte Carlo statistics	< 0.1	< 0.1
$B\bar{B}$ counting	±1.4	± 1.4
Total	+13.6 -15.8	$^{+13.1}_{-14.8}$
$M_{X_s} > 2.0 {\rm GeV/c^2}$ extrapolation	$^{+6.5}_{-10.9}$	$^{+3.0}_{-5.0}$
Total(extrapolated)	$^{+15.1}_{-19.2}$	$^{+13.4}_{-15.6}$

Results

Two methods for obtaining final results:

- Simple: Use fit results with syst. uncertainty calculations to obtain a global branching fraction.
 - Intuitive, but suffers from a large systematic error from signal MC mixing ratio
- Sum-up: calculate branching fractions in each bin and sum.
 - Simplifies the systematics, but bin-by-bin stat errors are poor.

Mode	Candidates	ARGUS shape	$N_{ m sig}$	Significance
$B \rightarrow X_s e^+ e^-$	578	-14.8 ± 1.8	$123.6 \pm 19.5 \pm 2.0$	7.0
$B \rightarrow X_s \mu^+ \mu^-$	432	-15.4 ± 1.9	$118.3 \pm 17.3 \pm 1.5$	7.9
$B \to X_s \ell^+ \ell^-$	1010	-15.7 ± 1.7	$237.8 \pm 26.4 \pm 2.5$	10.0

Results

Sum-up method results (reported as final)

Mode	$B(\times 10^{-6})$
$B \rightarrow X_s e^+ e^-$	$4.59 \pm 1.15 \substack{+0.56 \\ -0.51}$
$B \to X_s \mu^+ \mu^-$	$1.91 \pm 1.02 \substack{+0.15 \\ -0.14}$
$B \to X_s \ell^+ \ell^-$	$3.22 \pm 0.79 \substack{+0.28 \\ -0.25}$

Mode	$N_{\rm sig}$	Significance	ϵ (%)	$\mathcal{B} (\times 10^{-6})$
$B \to X_s e^+ e^-$	$123.6 \pm 19.5 \pm 2.0$	7.0	$2.56 \pm 0.01^{+0.34}_{-0.33}$	$3.67 \pm 0.58 \substack{+0.49 \\ -0.47}$
$B \to X_s \mu^+ \mu^-$	$118.3 \pm 17.3 \pm 1.5$	7.9	$2.67 \pm 0.01^{+0.36}_{-0.34}$	$3.38 \pm 0.49 \substack{+0.46 \\ -0.44}$
$B \to X_s \ell^+ \ell^-$	$237.8 \pm 26.4 \pm 2.5$	10.0	$2.62 \pm 0.00 \substack{+0.35 \\ -0.33}$	$3.46 \pm 0.38 \substack{+0.47 \\ -0.45}$

Figure 6.1: $M_{\rm bc}$ distribution of the 605 fb⁻¹ of $B \to X_s \ell^+ \ell^-$ sample (upper) and 605 fb⁻¹ of $B \to X_s e^{\pm} \mu^{\mp}$ sample (lower). Each column corresponds to $e^+ e^-$ (left), $\mu^+ \mu^-$ (center) and $\ell^+ \ell^-$ (right) cases. Background, peaking background, self cross feed components are shown in yellow, green, blue areas, respectively. Signal component is shown in the black line.

Conclusions

- Results consistent with SM predictions and previous results
- non-SM-like C₇ disfavored in updated constraints on Wilson coefficients

Table 9.1: The $B \to X_s \ell^+ \ell^-$ branching fractions (in $\times 10^{-6}$) measured in this thesis and predicted by the theoretical calculations. The new results shows that the non SM-like sign of C_7 is unlikely.

$M_{\ell^+\ell^-}$ range	World average in 2005 [1]	Measured by this thesis	SM	$C_7 = -C_7^{SM}$
$M_{\ell^+\ell^-} > 0.2 {\rm GeV/c^2}$	4.5±1.1	$3.3 \pm 0.80 \stackrel{+0.37}{_{-0.44}}$	4.4 ± 0.7	8.8 ± 0.7
$1 < M_{\ell^+\ell^-}^2 < 6 ({\rm GeV}/c^2)^2$	1.60 ± 0.5	$0.99\ \pm 0.20\ ^{+0.09}_{-0.08}$	1.57 ± 0.16	3.30 ± 0.25

Backup Material

Event Selection Criteria

Table 4.1: Summary of the particle selection criteria.

Particle	Selection criteria
Charged track	$ dr < 1.0 {\rm cm}$
	$ dz < 5.0 {\rm cm}$
Electron	$P_{lab} > 0.4 \mathrm{GeV/c}$
	electron probability > 0.8
Muon	Not selected as electron
	$P_{lab} > 0.8 \mathrm{GeV/c}$
	muon likelihood > 0.97
	atc_pid probability < 0.6 (muon-like)
Kaon	Not selected as electron, muon
	atc_pid probability > 0.6 (kaon-like)
Pion	Remaining tracks after selecting the lepton and K^{\pm} tracks.
$K_{ m S}^0$	$K_{\rm S}^0$ -like vertex, impact parameters
1990	$ m(\pi^+\pi^-) - m(K_{\rm S}^0) < 15 {\rm MeV/c^2}$
π^0	$E_{\gamma} > 50 \mathrm{MeV}$
	$E_{\pi^0} > 400 { m MeV}$
	$ m(\gamma\gamma) - m(\pi^0) < 10 \mathrm{MeV/c^2}$