Why not CS₂? - Lacks spin-dependent target (e.g. DRIFT uses a mixture with only 20% target). - Why not adjust mixture? At low pressures, need a lot of CS₂ to ensure electrical stability. - Highly toxic. Can be explosive with high O₂ concentration and spark. - Detector maintenance & operation issues: no re-circulation system, surface absorption. - Reduces light yield (optical readouts not necessarily excluded but more challenging). # How about SF_6 ? 78% of SF₆ mass is spin target. Recall: only 20% of DRIFT detector mass is spin target. CF₄ Electron Gas_{SF₆} ? CS₂ Negative lon Gas Advantages Advantages N. S. Phan et al., "THE NOVEL PROPERTIES OF SF_6 FOR DIRECTIONAL DARK MATTER EXPERIMENTS," (manuscript in preparation). ## SF₆ Properties & Applications #### Properties - Non-toxic, non-volatile, colorless, odorless - Electronegative gas with electron affinity: 1.1 eV - High vapor pressure: 15,000 Torr at room temperature - Good high voltage behavior #### Industrial Uses - Insulation for high voltage power devices - Semi-conductor fabrication - Metal casting - Many other uses #### Research Quencher in Resistive Plate Chambers (RPCs) (trace gas, not primary) #### Questions - Is it possible to produce avalanche in SF₆ gas? This requires stripping the electron from SF₆ in gain stage. - What gas gain is achievable and how does it depend on pressure? - What is the diffusion characteristic of SF₆ and how does it compare to CS₂? - Is fiducialization of events in the drift dimension attainable in SF₆ mixtures, and if so, under what conditions? - Other potential applications besides dark matter? Double-beta decay (SeF₆)? #### SF₆ Measurements - Pressure: 20 100 Torr pure SF₆ - Drift field: 0 1 kV/cm (60 kV, 60 cm drift) - Ionization generated with nitrogen laser (3.5 ns pulse width), trigger from laser, or ⁵⁵Fe source for gain measurements. - Single 0.4 mm THGEM for amplification. - Single channel charge readout to measure charge cloud Z-profile. ## ⁵⁵Fe Energy Spectrum $W\gamma = 34.0 \text{ eV}$ (average energy to create electron-ion pair in SF_6). 55 Fe (5.9 keV) -> 173 e⁻ - Gains: up to 3000 w/ single THGEM. - Energy resolution (σ/E): 25-45% (appears to depend on reduced field). - Can we get gain at higher pressure (e.g. ~ 1 atm.)? - Other amplification devices? ⁵⁵Fe energy spectrum in 30 Torr SF₆ using 0.4 mm THGEM ## Reduced Mobility and Diffusion Using nitrogen laser - SF-6 drift speed: 19 248 um/us - SF₅ ~ 9% faster than SF₆ - Diffusion deviates from thermal at E. N ~ 61 Td. * CF_4 at 20 Torr & 58 cm drift length: $\sigma = 3$ mm! Reduced Mobility: $$\mu_0 = \frac{v_d}{E} \frac{N}{N_0}$$ Thermal Diffusion: $$\sigma_z^2 = 2D_L t = \frac{2kTL}{eE}$$ # CS2: what's happening?? # Waveform Features: Multiple Peaks *Charge generated with nitrogen laser. # Waveform Features: SF₅ Peak - SF₅ peak grows with electric field (~ 2.8% of primary SF₆ at 1 kV/cm, 20 Torr). - Multiple drift species enables Z-fiducialization: $Z= rac{v_s\cdot v_p}{v_s-v_p}\Delta T$ ## Fiducialization in SF₆ - Waveforms of recoils from ²⁵²Cf in 30 Torr SF₆ at E = 1029 V/cm. - Additional peaks besides SF₅ and SF₆ are present. Could be F and SF₄? Or something related to water contamination? - Z-fiducialization resolution: $\sigma = 4$ mm. # Prospects for SF₆ in TPCs - SF₆ has properties that make it ideal for directional dark matter searches: - High fluorine content for spin-dependent searches. - Low, thermal diffusion over large drift distance -> detector Z scaling. - Multiple charge carriers for full event fiducialization. - Good high voltage behavior at low pressures, non-toxic, gas gain. # Scaling in the X-Y Dimensions - After sensitivity has been maximized per unit volume. - Low discrimination & directional thresholds (CCD detector) - Increased target density with SF₆ - Scale detector in Z (SF₆). - Finally, scale in X-Y dimensions. Novel 2D readout. A low-cost readout with similar resolution to CCD detector for X-Y detector scaling.