Why not CS₂?

- Lacks spin-dependent target (e.g. DRIFT uses a mixture with only 20% target).
- Why not adjust mixture? At low pressures, need a lot of CS₂ to ensure electrical stability.
- Highly toxic. Can be explosive with high O₂ concentration and spark.
- Detector maintenance & operation issues: no re-circulation system, surface absorption.
- Reduces light yield (optical readouts not necessarily excluded but more challenging).

How about SF_6 ?

78% of SF₆ mass is spin target.

Recall: only 20% of DRIFT detector mass is spin target.

CF₄ Electron Gas_{SF₆} ? CS₂ Negative lon Gas Advantages Advantages

N. S. Phan et al., "THE NOVEL PROPERTIES OF SF_6 FOR DIRECTIONAL DARK MATTER EXPERIMENTS," (manuscript in preparation).

SF₆ Properties & Applications

Properties

- Non-toxic, non-volatile, colorless, odorless
- Electronegative gas with electron affinity: 1.1 eV
- High vapor pressure: 15,000 Torr at room temperature
- Good high voltage behavior

Industrial Uses

- Insulation for high voltage power devices
- Semi-conductor fabrication
- Metal casting
- Many other uses

Research

 Quencher in Resistive Plate Chambers (RPCs) (trace gas, not primary)

Questions

- Is it possible to produce avalanche in SF₆ gas? This requires stripping the electron from SF₆ in gain stage.
- What gas gain is achievable and how does it depend on pressure?
- What is the diffusion characteristic of SF₆ and how does it compare to CS₂?
- Is fiducialization of events in the drift dimension attainable in SF₆ mixtures, and if so, under what conditions?
- Other potential applications besides dark matter? Double-beta decay (SeF₆)?

SF₆ Measurements

- Pressure: 20 100 Torr pure SF₆
- Drift field: 0 1 kV/cm (60 kV, 60 cm drift)
- Ionization generated with nitrogen laser (3.5 ns pulse width), trigger from laser, or ⁵⁵Fe source for gain measurements.
- Single 0.4 mm THGEM for amplification.
- Single channel charge readout to measure charge cloud Z-profile.

⁵⁵Fe Energy Spectrum

 $W\gamma = 34.0 \text{ eV}$ (average energy to create electron-ion pair in SF_6).

 55 Fe (5.9 keV) -> 173 e⁻

- Gains: up to 3000 w/ single THGEM.
- Energy resolution (σ/E): 25-45%
 (appears to depend on reduced field).
- Can we get gain at higher pressure (e.g. ~ 1 atm.)?
- Other amplification devices?

⁵⁵Fe energy spectrum in 30 Torr SF₆ using 0.4 mm THGEM

Reduced Mobility and Diffusion

Using nitrogen laser

- SF-6 drift speed: 19 248 um/us
- SF₅ ~ 9% faster than SF₆
- Diffusion deviates from thermal at E. N ~ 61 Td.

* CF_4 at 20 Torr & 58 cm drift length: $\sigma = 3$ mm!

Reduced Mobility:

$$\mu_0 = \frac{v_d}{E} \frac{N}{N_0}$$

Thermal Diffusion:

$$\sigma_z^2 = 2D_L t = \frac{2kTL}{eE}$$

CS2: what's happening??

Waveform Features: Multiple Peaks

*Charge generated with nitrogen laser.

Waveform Features: SF₅ Peak

- SF₅ peak grows with electric field (~ 2.8% of primary SF₆ at 1 kV/cm, 20 Torr).
- Multiple drift species enables Z-fiducialization: $Z=rac{v_s\cdot v_p}{v_s-v_p}\Delta T$

Fiducialization in SF₆

- Waveforms of recoils from ²⁵²Cf in 30 Torr SF₆ at E = 1029 V/cm.
- Additional peaks besides SF₅ and SF₆ are present. Could be F and SF₄? Or something related to water contamination?
- Z-fiducialization resolution: $\sigma = 4$ mm.

Prospects for SF₆ in TPCs

- SF₆ has properties that make it ideal for directional dark matter searches:
 - High fluorine content for spin-dependent searches.
 - Low, thermal diffusion over large drift distance -> detector Z scaling.
 - Multiple charge carriers for full event fiducialization.
 - Good high voltage behavior at low pressures, non-toxic, gas gain.

Scaling in the X-Y Dimensions

- After sensitivity has been maximized per unit volume.
 - Low discrimination & directional thresholds (CCD detector)
 - Increased target density with SF₆
- Scale detector in Z (SF₆).
- Finally, scale in X-Y dimensions.

Novel 2D readout.

A low-cost readout with similar resolution to CCD detector for X-Y detector scaling.