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Two Sentence Summary:

Hubble volume observables are biased by mode coupling to
super-Hubble perturbations.

Result: the spectral index is shifted by super-Hubble modes
coupling to non-Gaussian Hubble-scale modes.

A super-Hubble
blue spectral c¢/Ho
index...
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Two Sentence Summary:

Hubble volume observables are biased by mode coupling to
super-Hubble perturbations.

Result: the spectral index is shifted by super-Hubble modes
coupling to non-Gaussian Hubble-scale modes.

A super-Hubble
blue spectral c¢/Ho
index...

...can appear
red in a Hubble

9 patch.
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Curvature Perturbations,
Background and Foreground:
How does super-Hubble
structure affect our statistics?
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Quantum fluctuations seed structure /scalar perturbations ({)

Primordial

Inflaton Fluctuations Scalar Curvature
Perturbations

CMB, Matter,
Galactic Densities

¢ ATcmp

(curvature) Ap, ANgaIaxies
Bramante, COSPA 2013



Quantum fluctuations seed structure /scalar perturbations ({)

Primordial
Inflaton Fluctuations Scalar Curvature

CMB, Matter,

v ) Galactic Densities
Perturbations

8(P vary action S C transfer functions N ATCMB
Ap, AN

Bramante, COSPA 2013 (CUI"VCI‘I'U re) galaxies



Quantum fluctuations seed structure /scalar perturbations ({)

Primordial

Inflaton Fluctuations Scalar Curvature
| Perturbations

CMB, Matter,
Galactic Densities

ATcms
(curvature) Ap, ANgaIaxies

Bramante, COSPA 2013



If the universe inflated for >60 e-folds, separate Hubble-
sized patches have different perturbation histories ().
S,

ZL =< c >Hubble Volume Z51 ‘ ZS2: C_ CLQ
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If the universe inflates for >60 e-folds, separate Hubble-
sized patches will have different perturbation histories ().

ZL =< c >Hubble Volume

Different long
wavemode freeze-out
histories in the super-
Hubble volume lead to
different values for (|,
and different statistics in
subvolumes.
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Reheated Hubble Patches
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Ho d3k
<CG|2> — % 0 (27‘[)3 PGl(k)

N S S=S>

The probability of the Gaussian part
of super-Hubble modes, (, takes
different values depending on the
super-Hubble power spectrum. This
results in a distribution of over and
under-densities in Hubble volumes.
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Curvature Perturbations, Background vs. Foreground:

Only see an effect for non-Gaussian Statistics.
e

Local ansatz expands (C) into Gaussian and non-G. pieces

(=0Cct ngL (% - < (%)

Apply a long/short wavelength split 0c = Gort Gas

G = Uas(1 + ngL Car) T

Hubble-scale {, acquires a term dependent on Hubble-scale
non-Gaussianity and super-Hubble power spectrum < (g 2>
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Curvature Perturbations, Background vs. Foreground:

Only see an effect for non-Gaussian Statistics.
17|
Local ansatz expands (C) into Gaussian and non-G. pieces

(=0Cct ngL (ZGZR_ < (52>)

Apply a long/short wavelength split YG = Gart s

G = Uas(1 + ngL ZPI) ...
v

constant term in Hubble volume

Hubble-scale {, acquires a term dependent on Hubble-scale
non-Gaussianity and super-Hubble power spectrum < (g 2>
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We see that f'°® Hubble volumes will
vary in super-Hubble backgrounds.

This will transfer to variance in the
power spectrum and spectral index from
Hubble volume to volume in a universe
with any local non-gaussianity.
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Cosmic Variance of the Power Spectrum

A Planck universe could be sourced
by a mostly Gaussian superhorizon.

- It could also arise in a very “local”
non-Gaussian superhorizon with
enough superhorizon e-folds.
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Cosmic Variance of the Power Spectrum
0

multifield, multiloop analysis
@,c scalar fields
E=P,/ P(p
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Cosmic Variance of the Power Spectrum
o

PE(k) = Py(k) + (14 s (Roa + 5 SR (K)o ) Po(h)

+p ) [ T P o) Pu(k — o)

e P ne(k) = / + / +
¢ o

Momentum space
diagrams show IR

“leg” modes . V;L?
along with FeRah) = / N / i \%
¢ 9]

standard loop
corrections.
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The super-Hubble power and bispectrum can differ from
the Hubble power and bispectrum.
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Ho, d3k
<ZGI2> = % ° (2m)3 PGl(k)

Sum over long
wavemode
curvature perturbations.
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N=350 consistent with
n,=0.96

Nonperturbative

N=350 consistent with
n=1

N=350 consistent with \10'l :
n=1.02 T

1072t '
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So Planck’s fy,'°«! < 15 tell us that local
non-Gaussianity is very small ...
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So Planck’s fy,'°«! < 15 tell us that local
non-Gaussianity is very small ...

Or the universe is much larger than
what we observe, which suppresses this
number in the Hubble volume.
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Cosmic Variance of the Spectral Index
s

1.04
1.00
0.96

- Running in local f, and superhorizon bias

transfer to a superhorizon correction of the

running of the spectral index.
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Cosmic Variance of the Spectral Index
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1.04
‘ 1.00
0.96

Running in local f, and superhorizon bias
transfer to a superhorizon correction of the
running of the spectral index.

When measuring power spectrum, implicitly
measuring squeezed three-point function with
long leg being an under/overdensity of
superhorizon wavemodes...so if squeezed
non-Gaussianity is running, power spectrum
will be seen to run too.



Cosmic Variance of the Spectral Index
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Cosmic Variance of the Spectral Index
I
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Cosmic Variance of the Spectral Index
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~ n, for weakly non-Gaussian statistics.
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Cosmic Variance of the Spectral Index

n,=1, ng=0.1
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n, could be flat for the

. , n, could be smeared around
correction inflation model

0.96 by cosmic variance
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So either Planck tell us that the spectral
index is exactly 0.9608 +/- 0.0070 ...
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So either Planck tell us that the spectral
index is exactly 0.9608 +/- 0.0070 ...

Or the universe is much larger than
what we observe and there is running
local non-Gaussianity...
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A perfectly flat spectral index can be reconciled with a super-

Hubble volume.

On the other hand, n.=0.96 is actually inconsistent with with a large
superhorizon background and significant local non-Gaussianity.
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Simple Single Source Examples of Super

Cosmic Variance
A

e Constant fl‘jca’l = 5. We observe [y local — 8 if, for example, the spectral index is a
constant ng = 0.96 over about 200 e:s{tra, e-folds of inflation and our Hubble patch sits
on top of a 2-sigma under density.

e Local non-Gaussianity with constant /i = 15. We observe figf®! = 11 if, for example,
the spectral index is a constant ns = 0. 96 over about 150 extra e-folds of inflation and
our Hubble patch sits on top of a 2-sigma over-density.

e Scale-dependent non-Gaussianity with fxr(kp) = —2, ny = 0.04, ne = 0.93, and n, =
0.935. We would observe fnr,(k,) = —1 and n°P = 0.956 if our Hubble patch sits on

top of a 2-sigma under density in a volume with about 190 extra e-folds.

e Scale-dependent non-Gaussianity with fyr,(k;) = 20, ny = 0.03, ne = 0.95, and n, =
1.005. We would observe fni,(k,) = 2.5 and n°" = 0.975 if our Hubble patch sits on

top of a 0.2-sigma over density in a volume with about 280 extra e-folds.
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Future Work

L
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Primordial Tilt (n,)

- The assumption of 60 e-folds should be re-evaluated.

- Bayesian inference methods for evaluating models should take into
account super-cosmic variance.
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Future Work

0 Constrain standard inflationary models assuming superhorizon
numbers of e-folds.

0 Analyze impact on other CMB observables: tensors, scale of
inflation...

0 Use universal inflation formalism to constrain classes of inflation
models in terms of e-folds.

0 Re-evaluate models which may have previously been rejected for
predictions of n, << 0.96 or 0.96<<n..
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Spectral Index Variance Plots
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Spectral Index Constant for Large f_Bias
e

P na(k)
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Spectral Index Constant for Large f_Bias
o

Prna(k) =

PeNc(k) =
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