On Model Dependence in (String) Inflation

Retooling Inflationary Attractor Dynamics

Sean Downes
Leung Center for Cosmology and Particle Astrophysics
National Taiwan University
CosPA 2013

After Planck

Hundreds of noncanonical scalar fields in complicated potentials.

Measurements **shape** and **size** of nongaussianity **offered**a **wealth** of new theoretical understanding

so... now what?

Random Supergravity Searches

Randomized couplings in Scalar Potential

(Bean, McAllister 11), (Frazer, Liddle 12)

"Universal" behavior, $\mathcal{P} \propto 1/\mathrm{N_e^3}$

This scaling was related to the **emergence**...

of an **inflection point** (SD,Dutta,Sinha 12)

Inflection Point Inflation

The Itzhaki-Kovetz Model

(Itzhaki, Kovetz 08)

$$V = 1 + \beta \phi^3$$

 $\beta_{\rm C} \approx 0.774$

overshoots when $\beta > \beta_C$

Sean Downes

... akin to a second order phase transition at β_C .

The Single Field Basin of Attraction

(SD, Dutta, Sinha 12)

Multifield Effects

$$V = \varphi^4 + \alpha \varphi^3 + \beta \varphi \chi^2 + m^2 \chi^2 + \cdots$$

Multifield Effects

(SD, Dutta I.P.)

Trajetories in Field Space for Various ω_0

Multifield Effects

(SD, Dutta I.P.)

Trajetories in Field Space for Various ω_0

Curious Corollary

(SD,Dutta 13)

$$\frac{\partial \log \frac{\partial \Phi}{\partial N}}{\partial N} \longleftrightarrow \frac{V_{\Phi \Phi}}{V} - \left(\frac{V_{\Phi}}{V}\right)^2$$

Power suppression at Large Scales

(SD, Dutta 13)

$$\frac{\partial}{\partial N} \log \frac{\partial \varphi}{\partial N} \longleftrightarrow \frac{V_{\varphi \varphi}}{V} - \left(\frac{V_{\varphi}}{V}\right)^2$$

On the Attractor Dynamics of Inflection Point Inflation:

- (1) Overshoot Problem
- (2) Dynamically generated period of "fast-roll"

(Burgess, Cicoli, Quevedo), (Quevedo, Conlon), (Blanco-Pillado et. al.),...

Large Volume Scenario & Fibre Inflation

(Fibre) Power Suppression

(Cicoli, SD, Dutta 13), (Pedro, Westphal 13)

$$\frac{\partial}{\partial N} \log \frac{\partial \Phi}{\partial N} \longleftrightarrow \frac{V_{\Phi\Phi}}{V} - \left(\frac{V_{\Phi}}{V}\right)^2$$

(Fibre) Power Suppression

Low Multipoles for Benchmark Parameters

Sean Downes

Conclusion

Planck Data suggests very slow-rolling canonical scalar

Inflection Point and Starobinsky-like potentials

abound in String Models

Both include "transition" effects to explain low power

What (if any) correlations can these embeddings of

inflation reveal?