Modeling Nuclear Fallout Design Review

Casey Burnett

Phys 305

University of Hawaii-Manoa

Introduction

Accidents happen:

Fukushima - 2011

Chernobyl – 1986

How are the isotopes spread?

What is the impact on the region?

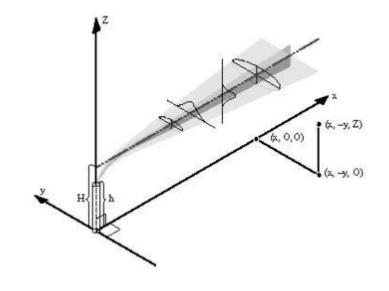
How long are the effects noticeable?

Problem Statement

- Provide a program that will model atmospheric dispersion of radioactive particles from an event and provide ground level concentrations as well as estimated increase in radiation levels from calculated concentrations
- Base line
 - Fire in RAM of one isotope, immediate dispersion and dose
- Expansion
 - Time factor, account for decay to estimate concentrations and exposure-15y, 60y, 150y, 300y.
 - More violent source, i.e. explosion vs. fire

Dispersion

$$C(x, y, 0, H) = \frac{Q}{\pi \sigma_y \sigma_z u} e^{\frac{-y^2}{2\sigma_y^2}} e^{\frac{-H^2}{2\sigma_z^2}}$$


 $C = \text{concentration at point (x,y) (kg/m}^3) \text{ or (Ci/m}^3)$

Q = mass flow of contaminates from source (kg/s) or (Ci/s)

H = effective height of emissions (m)

u = wind speed (m/s)

 $\sigma_y \sigma_z$ = standard deviation of plume concentration in y or z plane (m)

http://www.faa.gov/regulations_policies/policy_guidance/envir_policy/airquality_handbook/media/App_I.PDF

Atmospheric Considerations

TABLE 1. Key to P-G stability categories using objective and conventional Turner methods.

Surface wind speed (10 m) (m s ⁻¹)	Day Incoming solar radiation (W m ⁻²)			Night	
				Thinly overcast	Clear or
	Strong (>700)	Moderate (350-700)	Slight (70–350)	or more than 1/2 low clouds (−∆T)*	less than 1/2 clouds (+ΔT)*
<2	A	A	В	Ē	F
2-3	A	В	С	Е	F
3-5	В	В	C	D	E
5-6	С	С	D	D	D
>6	Ċ	D	D	D	D

^{*} ΔT is change in temperature with height, such as 2-10 m AGL. Negative ΔT indicates cooling with height; positive ΔT indicates warming with height.

Atmospheric Considerations

TABLE 2. Formulas recommended by Briggs (1973) for sigma y and sigma z. Equations are valid for downwind distances (x) from 100 m to 10 km.

P-G category	σ _y (m)	σ _z (m)
Open-country		
conditions		
Α	$0.22x(1 + 0.0001x)^{-1/2}$	0.20x
В	$0.16x(1 + 0.0001x)^{-1/2}$	0.12x
C	$0.11x(1 + 0.0001x)^{-1/2}$	$0.08x(1 + 0.0002x)^{-1/2}$
D	$0.08x(1+0.0001x)^{-1/2}$	$0.06x(1+0.0015x)^{-1/2}$
E	$0.06x(1+0.0001x)^{-1/2}$	$0.03x(1 + 0.0003x)^{-1}$
F	$0.04x(1+0.0001x)^{-1/2}$	$0.016x(1 + 0.0003x)^{-1}$
Urban		
conditions		
A-B	$0.32x(1+0.0004x)^{-1/2}$	$0.24x(1+0.001x)^{1/2}$
C	$0.22x(1+0.0004x)^{-1/2}$	0.20x
D	$0.16x(1+0.0004x)^{-1/2}$	$0.14x(1+0.0003x)^{-1/2}$
E-F	$0.11x(1+0.0004x)^{-1/2}$	$0.08x(1+0.00015x)^{-1/2}$

Bowen, Brent Evaluation and Comparison of Several Methods to Determine Dispersion Coefficients, 1994

Source

$$\Delta T_c = \left(\frac{T_{\infty}}{gC_p^2 \rho_{\infty}^2}\right)^{1/3} \dot{Q_c}^{2/3} (z - z_0)^{-5/3}, \qquad U_c = \left(\frac{g}{C_p \rho_{\infty} T_{\infty}}\right)^{1/3} \dot{Q_c}^{1/3} (z - z_0)^{-1/3}$$

 ΔT_c = centerline mean temperature difference (K)

 T_{∞} = ambient temperature (K)

g = acceleration of gravity (m/s²)

 C_p =specific heat of air at constant pressure [(kJ/kg)/K]

 ρ_{∞} =ambient air density (kg/m³)

 \dot{Q}_c = convective heat release rate (kJ/s) or (kW)

z = elevation above fuel source (m)

 z_0 = elevation of fuel source (m)

 U_c = centerline mean velocity (m/s)

Budnik, Edward Simplified Fire Growth Calculations, 1997

Plume Rise Height

switch (sta) { case 1: case 2: case 3: case 4: case 5: ds=0.02; break: case 6: ds=0.035; break: default: ds=0.0; 3 double s= g/Ta*(ds); double F= g*U*pow(D,2)/4*(1-Ta/T); switch (sta) { case 1: case 2: case 3: case 4: if(F>=55){ dt=0.00575*T*pow(U,2.0/3.0)/pow(D,1.0/3.0); $if((T-Ta) \le dt) \{Dh=3*D*U/u;\}$ else{ xst=34*pow(F,2.0/5.0); xf=3.5*xst;if(x>=xf){Dh=1.6*pow(F,1.0/3.0)*pow(xst,2.0/3.0)/u; break;} else{Dh=1.6*pow(F, 1.0/3.0)*pow(x, 2.0/3.0)/u;} else { dt=0.0297*T*pow(U,1.0/3.0)/pow(D,2.0/3.0); if((T-Ta)<=dt){Dh=3*D*U/u;} else{ xst=14*pow(F,5.0/8.0); xf=3.5*xst;if(x>=xf){Dh=1.6*pow(F,1.0/3.0)*pow(xst,2.0/3.0)/u; break;} $else\{Dh=1.6*pow(F,1.0/3.0)*pow(x,2.0/3.0)/u;\}$ } break; case 5: case 6: dt=0.01958*Ta*U*pow(s,0.5); $if((T-Ta) <= dt) \{Dh=1.5*pow(pow(U,2)*pow(D,2)*Ta/(4*T*u),1.0/3.0)*pow(s,-1.0/6.0);\}$ xf=2.07*u/pow(s,0.5); $if(x>=xf) \{Dh=2.6*pow(F/(u*s),1.0/3.0); break;\}$ else{Dh=2.6*pow(F/(u*s),1.0/3.0);} } break; return Dh;

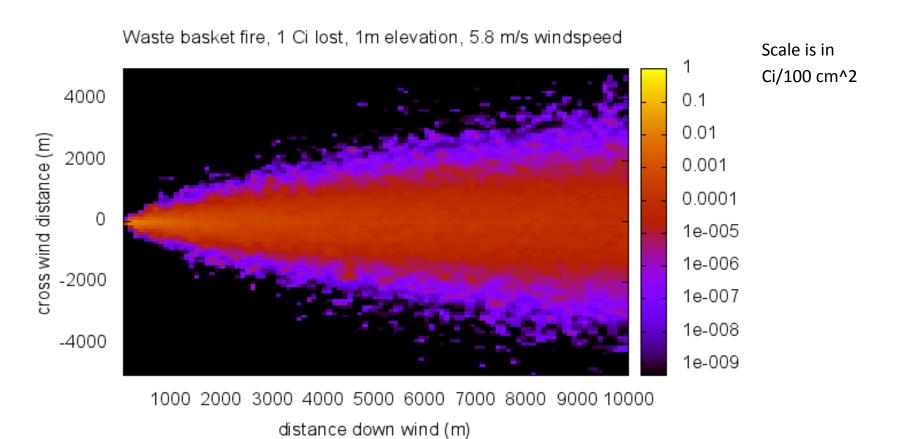
Bowen, Brent Evaluation and Comparison of Several Methods to Determine Dispersion Coefficients, 1994

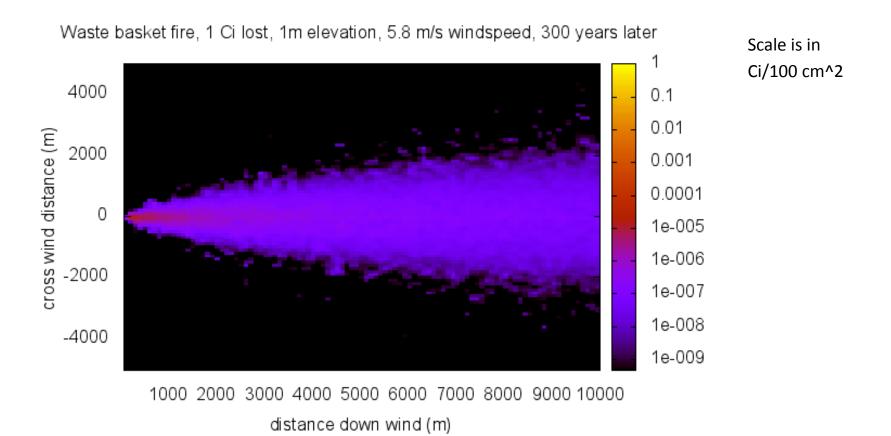
Exposure

$$\dot{X} = 5.263 \times 10^{-6} \frac{AyE(\mu_{en}/\rho)}{r^2}$$

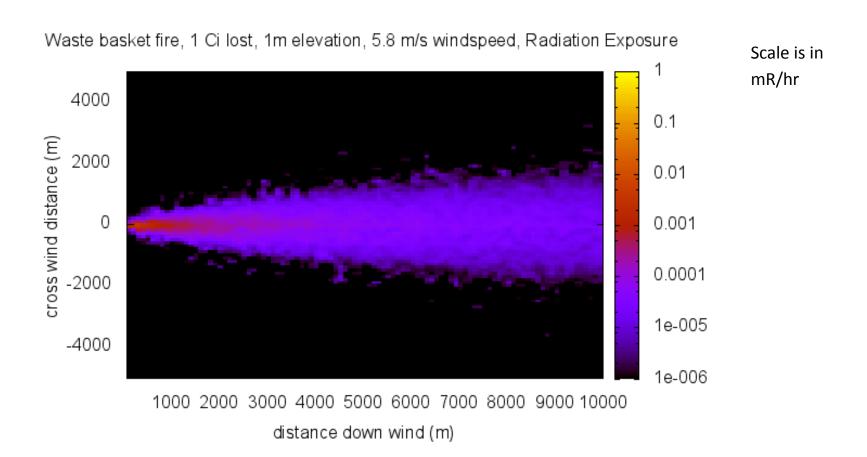
 \dot{X} = exposure (mR/h)

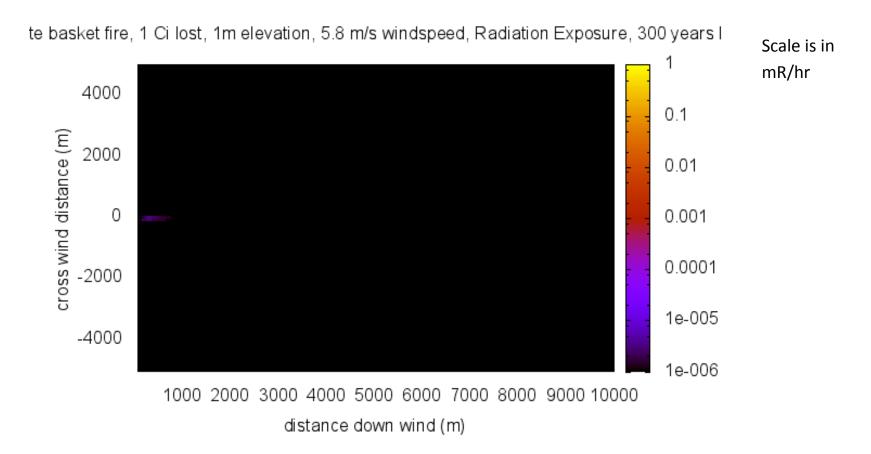
A = activity (Bq)

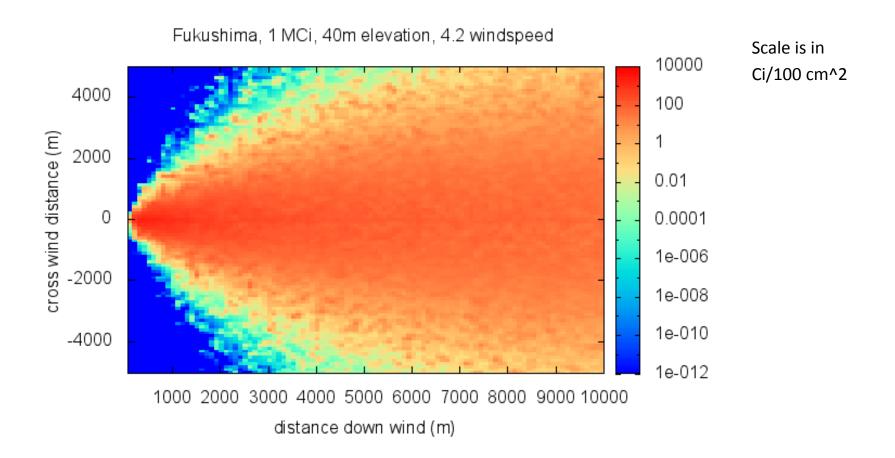

y = number of photons emitted

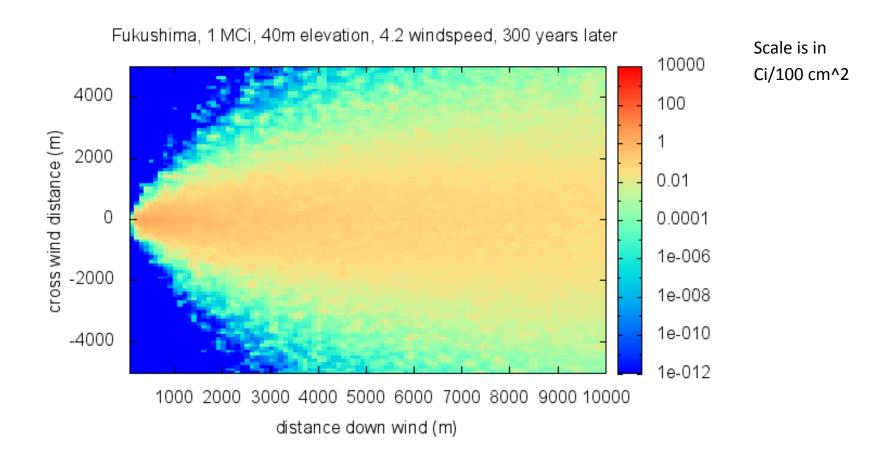

E= energy of photons (MeV)

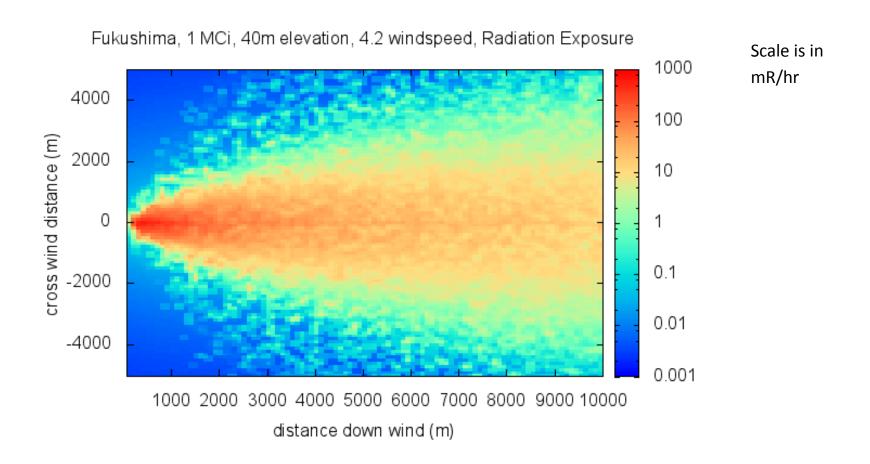
 μ_{en}/ρ = mass energy absorption coefficient (m²/kg)

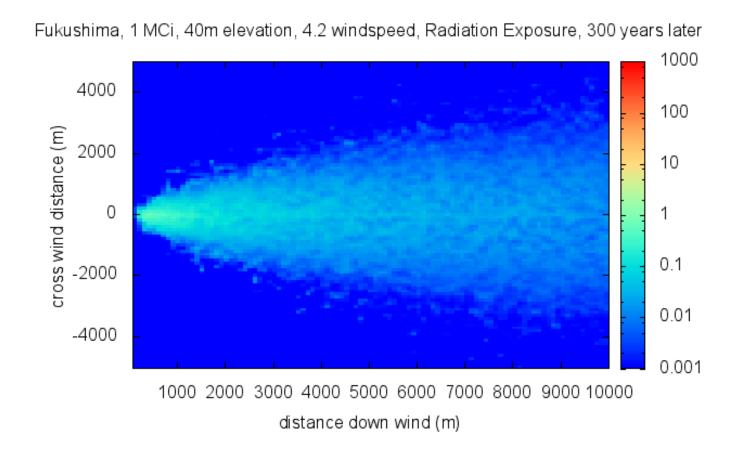

r = distance from point (m)


Chabot, George Relationship Between Radionuclide Gamma Emission and Exposure Rate, http://hps.org/publicinformation/ate/faqs/gammaandexposure.html, Aug 27,2011




11





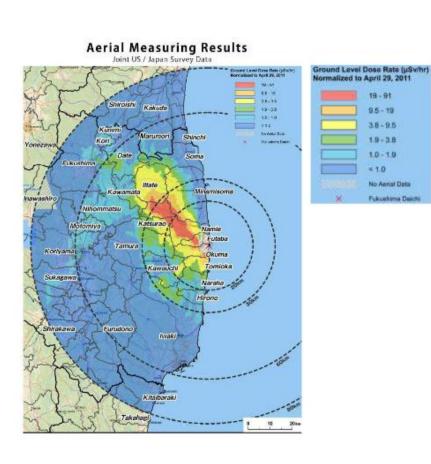
13

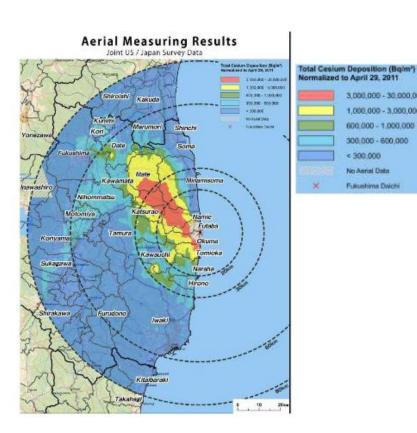
Scale is in mR/hr

Actual Fukushima Distribution

19 - 91

9.5-19


38-95


19-38

1.0 - 1.9

Fukushima Daichi

< 1.0 No Aerial Data

3,000,000 - 30,000,000

1,000,000 - 3,000,000

600,000 - 1,000,000

300,000 - 600,000

< 300,000

No Aerial Data

Fukushima Dolchi