Trip to Mars (and beyond!)

Hohmann Transfer Orbit

 Efficient way to travel between two orbits

Slingshot Method

Conservation of energy

Problem

To model a voyage from Earth to Mars

Calculate position and velocity of rocket and planets

 Determine the 'best' method of travel: time and fuel efficiency

Solution

 Use Runge Kutta 4 to solve ODEs for position and velocity of bodies

$$\mathbf{F_{12}} = -rac{Gm_1m_2}{r_{12}^3}\,\mathbf{r_{12}} \qquad \qquad rac{rac{d\mathbf{r}}{dt}}{dt} = \mathbf{v} \ rac{d\mathbf{v}}{dt} = -rac{GM}{r^3}\,\mathbf{r}$$

G=Gravitational constant, m=mass, r=position, v= velocity

Hohmann Orbit to Mars

Slingshot to Mars

Hohmann Orbit to Jupiter

Slingshot to Jupiter

Time Efficiency

Method	Time (yr)
Hohmann (M)	0.70
Slingshot (M)	1.00
Hohmann (J)	2.72
Slingshot (J)	4.00

 Hohmann transfer is faster in both cases

Time Efficiency

Fuel Efficiency

 Slingshot method uses lots of fuel to slow down

Method	Total boosts
Hohmann (M)	~20 km/s
Slingshot (M)	~81 km/s
Hohmann (J)	~17 km/s
Slingshot (J)	~19 km/s

Fuel Efficiency

Which is the best?

 Hohmann transfer orbit is best suited for a trip to Mars

 Slingshot method better suited to traveling beyond our Solar System