
 1

HTF
an alternative approach

by: Andrew Carpenter

 2

What is HTF?
● High Frequency Trading :

Most commonly known as trades taking place in time
intervals ranging from hours to microseconds and the
volumes of the stocks traded tend to be quite large ~
around 50,000 shares at a time.

● Additional HTF characteristics:
Exploiting the inefficiencies of the market to make money off of
the small fluctuations in price over a short time-interval

Each individual stock sold usually only makes fractions of a
dollar or even a single penny.

HTF most often involves the use of an algorithmic trading
strategy executed by computer programs written in c++

 3

Key principles involved
● Most often the models for HTF algorithms make

use of the inefficiencies of the market.
- “ The relative availability of trading opportunities can
be measured as a degree of market inefficiency. ” [1]

 - “ The more inefficient the market, the more predictable
trading opportunities become available. Tests for market
efficiency help discover the extent of predictable trading
opportunities. ” [1]

 - For inefficient markets, price fluctuations for a
short period of time are have a degree of non-
randomness and can be correlated to other
factors within a certain degree of accuracy

 4

Conclusion
● If market is inefficient: price fluctuations are

predictable.
● If market is efficient: price fluctuations are

unpredictable ~ random.

 5

An alternative approach
● If instead we look for efficient markets (markets

for certain stocks) then we know that their
prices should fluctuate randomly.

● These markets can be found by using certain
test that check for randomness.

● The opportunities that exist in a randomly
fluctuating market can be found by:
 Identifying the momentary local minimums in
the price.
Identifying the momentary local maximums in
the price.

 6

● n1 = sum blue lines = 8

● n2 = sum of green lines = 7
● u = sum of consecutive green lines and consecutive blue

lines = 9

 7

Test for randomness
[1]

Denote the total number of runs, both positive and
negative, observed in the sample as u
.
Denote n1 as the number of positive 1-minute changes

Denote n2 as the number of negative 1-minute changes

If Z < 1.645 , then the 1-minute changes are random

 8

Define local minimums:
● The condition that there is a strong statistical

chance that the next change will be positive
-The chance that you flip a coin to get 10 heads
in a row is a bit small, therefore I'd be more
willing to but my stakes on 7 heads and 3 tails.

● Determine a rule set in algorithm to define
these favorable conditions to buy stocks
-For example: Rule 1 – If n2 increases 7 times
consecutively, buy stocks at current price

 9

A main for loop contains the Buy
and Sell Rule set

For(i =1 ; i <362; i ++){ //i represents a minute
● Buy rule for-loop
● Sell rule for-loop

}

 10

Use of Entropy – Buy Rule
● U = Nn + Pn ;
● if(U > 0){probNn = (Nn / U);}

//avoids singularities
● if(U > 0){probPn = (Pn / U);} // ^
● if(probNn > 0 && probPn > 0)

{Entropy = -1.0*probNn*log10(probNn) +
-1.0*probPn*log10(probPn);}

if((1-pow((Entropy/EnMax),2.0)) > 0.8 && Nn > Pn && Nn > 9 && i < 362 &&
floor((netcash*0.5)/p[i]) >= 1.0){
 n++;
 nimax = n;
 boughtstocks5[n] = floor((netcash*0.5)/p[i]) ;
 netcash = (netcash - boughtstocks5[n]*p[i]) ;
 boughtprice5[n] = p[i];
 fout << i << " " << boughtprice5[n] << endl;
 cout << i << " " << "boughtprice5["<< n << "]=" <<
boughtprice5[n] << " " << p[i] << endl;
 }

 11

Sell Rule
● for(n=1; n <= nimax ; n++){
● if(p[i]*1.0 - boughtprice5[n]*1.0 > 0.01 &&

boughtstocks5[n] > 0 && boughtprice5[n] > 0.0){
● sellprice5[n] = p[i];
● netcash = netcash + boughtstocks5[n]*p[i];

boughtstocks5[n] = 0;
● cout << i << " " << "sellprice5[" << n << "]= "

<< sellprice5[n] << endl;
● fout << i << " " << sellprice5[n] << endl;
● }
● }

 12

 *Green points: Price bought at
 *Blue points: Price sold at

 13

Started off really well...

 14

References

1. Aldridge, Irene. High-frequency Trading: A Practical Guide
to Algorithmic Strategies and Trading Systems. Hoboken, NJ:
Wiley, 2010. Print.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

