Cinkm 2012

The $5^{\text {th }}$ International Workshop on Charm Physics

 14-17 May, 2012 Honolulu - Hawaii (USA)
Recent Charmonium Results

5
GEFÖRDERT VOM

BaBar

from

E. Prencipe on behalf of the BaBar Collaboration

Outinne

- Introduction
- Motivation
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \mathrm{J} / \psi \pi^{+} \pi^{-}$
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$
- $\gamma \rightarrow \eta_{c} \pi^{+} \pi^{-}$
- $\gamma \gamma \rightarrow \mathrm{J} / \psi \omega$
- Conclusions
E. Prencjpe Cheifsonjuss fesults fiofa

B-factory: charmonium production processes

ISP DIROCESSES

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \mathrm{J} / \psi \pi^{+} \pi^{-}$
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$

Analysis $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} J / \psi \pi^{+} \pi^{-}$: motivation

- Discovered by BaBar: PRL 95, 142001 (2005) Confirmed by CLEOc: PRL 96, 162003 (2006) CLEOIII:PRD74, 091104 (2006) BELLE: PRL 99, 182004 (2007)
- Produced in ISR of $\mathrm{J} / \psi \pi^{+} \pi^{-} \Rightarrow \mathbf{J P C}^{\mathbf{P C}}=\mathbf{1}^{--}$

The existence of $\mathrm{X}(3872)$, observed in $\mathrm{B} \rightarrow \mathrm{XK}, \mathrm{X} \rightarrow \mathrm{J} / \psi \pi^{+} \pi$, has suggested the idea to investigate further, even in ISR production of $\mathrm{J} / \psi \pi^{+} \pi^{-}$

- All 1- slots in charmonium spectrum are filled: the nature of $Y(4260)$ is still not clear
- BELLE suggested the existence of $Y(4008)$ in ISR production of $\mathrm{J} / \psi \pi^{+} \pi^{-}$, too

Analysis $e^{+} e^{-} \rightarrow \gamma_{I S R} J / \psi \pi^{+} \pi^{-}$: new results

- An extended-maximum-likelihood fit is performed in the signal region $\mathrm{J} / \psi \pi^{+} \pi^{-}$ distribution and simultaneously to the background distribution in the region $3.74-5.5 \mathrm{GeV} / \mathrm{c}^{2}$
- The fit function incorporates the mass-dependence of efficiency and luminosity, and uses a relativistic BW for the $Y(4260)$ fit, a $3^{\text {th }}$ order polynomial to describe the background from J / ψ sidebands, and an empirical exponential function describes the excess of events below $4 \mathrm{GeV} / \mathrm{c}^{2}$, which may result from $\psi(2 \mathrm{~S})$ tail and a possible $\mathrm{J} / \psi \pi^{+} \pi^{-}$ non-resonant contribution

NO evidence for $Y(4008)$ is found

Analysis $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} J / \psi \pi^{+} \pi^{-}$: di-pion mass

- The di-pion mass distribution was investigated within $4.15<m\left(J / \psi \pi^{+} \pi^{-}\right)<4.45$ $\mathrm{GeV} / \mathrm{c}^{2}$: we define θ_{π} as the angle between the π^{+}direction and that of the recoil J / ψ, both in the di-pion rest frame

- The distribution of $\pi^{+} \pi^{-}$, which must be symmetric, is consistent with S -wave behaviour $\chi^{2} / N D F=12.3 / 9$; probability = 19.7\%
- The $\pi^{+} \pi^{-}$system has $\mathbf{C}=1^{+}$

- The distribution looks peaking at $\mathrm{f}_{0}(980)$, but it is displaced; this suggests the idea of an interference between $f_{0}(980)$ and $\pi^{+} \pi^{-}$continuum

Analysis $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} J / \psi \pi^{+} \pi^{-}$: di-pion mass

- A simple model to describe the di-pion mass was used, namely the square of an amplitude consisting of the coherent sum of a non-resonant component, motivated by QCD multipole expansion and a $\mathrm{f}_{0}(980)$ amplitude; the relative strength and phase of these components are free to vary in the fit to the data
- Mass dependence of $f_{0}(980)$ amplitude and phase is from the BaBar analysis $\mathrm{D}_{\mathrm{s}}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \Rightarrow$ there is non-dominant $f_{0}(980)$ contribution to the $Y(4260)$ decay to $J / \psi \pi^{+} \pi^{-}$

E. Prencjpe - Chajnsonjufs fesult ffofs Bel Bej - CHARM2012 (Honolulu)

Analysis $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$: motivation

Y(4360)

- Discovered by BaBar: PRL 98, 212001 (2007) Confirmed by BELLE: PRL 99, 142002 (2007)

BELLE reported the observation of $\mathrm{Y}(\mathbf{4 6 6 0})$

Y(4360), Y(4660)

- Produced in ISR of $\psi(2 S) \pi^{+} \pi^{-} \Rightarrow \mathbf{J P C}^{\text {PC }}=\mathbf{1}^{--}$
- Need to investigate the invariant mass $\psi(2 S) \pi^{+} \pi^{-}$, as new structures have been shown in ISR production of Charmonium states
- This analysis has been performed in BaBar with the full data sample $Y(n S), n=2,3,4$

BABAR PRELIMINARY

Analysis $\mathrm{e}^{+} e^{-} \rightarrow \gamma_{\text {ISR }} \psi(2 S) \pi^{+} \pi^{-}$: new results

- $\psi(2 \mathrm{~S}) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$and $\psi(2 \mathrm{~S}) \rightarrow I^{+} l^{-}$are investigated. Huge background contribution from $\psi(2 \mathrm{~S}) \rightarrow l^{+1}$ is seen
- An unbinned extended-maximum-likelihood fit is performed in the signal region and simultaneously to the background distribution: background is studied and selected from $\psi(2 \mathrm{~S})$ sidebands

$$
\begin{aligned}
& \operatorname{Mass}(Y(4360))=4340 \pm 16 \pm 9 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma(\mathrm{Y}(4350))=94 \pm 32 \pm 13 \mathrm{MeV} \\
& \operatorname{Mass}(\mathrm{Y}(4660))=4669 \pm 21 \pm 3 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma(\mathrm{Y}(4660))=104 \pm 48 \pm 10 \mathrm{MeV}
\end{aligned}
$$

Confirmation of the old $Y(4360)$ and the new $Y(4660)$

Analysis $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$: cross section

We cannot conclude anything on the di-pion mass distribution because of the low statistics $\sigma(m)=\frac{12 \pi C}{m^{2}} \cdot\left|A_{1}(B W) \cdot \sqrt{\frac{P S(m)}{P S\left(m_{1}\right)}}+A_{2}(B W) \cdot \sqrt{\frac{P S(m)}{P S\left(m_{2}\right)}} \cdot e^{i \phi}\right|^{2}$

$$
C=0.3894 \cdot 10^{9} \mathrm{GeV}^{2} \mathrm{pb}
$$

$P S(m)=$ mass-dependence of $\psi(2 S) \pi^{+} \pi^{-}$phase space
$\phi=$ relative phase between the amplitudes A_{1} and A_{2}

$$
A_{j}(B W)=\frac{m_{j} \sqrt{\left(\Gamma_{e^{+} e^{-}} \cdot \Gamma_{\psi(2 S) \pi^{+} \pi^{-}}\right)_{j}}}{m_{j}^{2}-m^{2}-i m_{j} \Gamma_{j}}
$$

ry interactions
$\cdot \gamma \gamma \rightarrow \eta_{c} \pi^{+} \pi^{-}$
$\cdot \gamma \gamma \rightarrow J / \psi \omega$

Analysis $\gamma \gamma \rightarrow \eta_{c} \pi^{+} \pi^{-}$: strategy

- The process under exam is the production of a X state, where $\gamma \rightarrow X \rightarrow \eta_{c} \pi^{+} \pi^{-}$

$$
\begin{aligned}
& \mathrm{X}= \chi_{\mathrm{c} 2}(1 \mathrm{P}), \eta_{\mathrm{c}}(2 \mathrm{~S}), \mathrm{X}(3872), \text { or } \chi_{\mathrm{c} 2}(2 \mathrm{P}) \\
& \eta_{\mathrm{c}}(1 \mathrm{~S}) \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{~K}^{ \pm} \pi^{\mp} \\
& \mathrm{K}_{\mathrm{S}}^{0} \rightarrow \pi+\pi-
\end{aligned}
$$

- The BF of the decay $\chi_{\mathrm{c} 2}(1 \mathrm{P}), \eta_{\mathrm{c}}(2 \mathrm{~S}), \mathrm{X}(3872)$, and $\chi_{\mathrm{c} 2}(2 \mathrm{P})$ to $\eta_{\mathrm{c}} \pi^{+} \pi^{-}$is measured

```
Prediction for B( }\mp@subsup{\eta}{c}{}(2S)->\mp@subsup{\eta}{c}{}(1S)\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-})~2.2
obtained from \Gamma( }\mp@subsup{\eta}{c}{}(2S)->\mp@subsup{\eta}{c}{}(1S)\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-})/\Gamma(\psi(2S)->J/\psi\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-})~2.
(M.B.Voloshin Mod.Phys.Lett A 17, 1533 (2002))
```

- The extraction of signal proceeds in 2 steps:
- determine the values of $m\left(K_{s}^{0} K^{ \pm} \pi^{\mp}\right)$ distribution parameters for the combinatorial background from 1-dim fit to $m\left(K_{s}^{0} K^{ \pm} \pi^{\mp}\right)$
- perform 2-dim fit in $m\left(K_{s}^{0} K^{ \pm} \pi^{\mp}\right)$ and $m\left(K_{s}^{0} K^{ \pm} \pi^{\mp} \pi^{+} \pi^{-}\right)$in a window around each resonance of interest

Analysis $\gamma \gamma \rightarrow \eta_{c} \pi^{*} \pi^{-}$: results

X(3872)

Summary table of the results

Resonance	$M_{X}\left(\mathrm{MeV} / c^{2}\right)$	$\Gamma_{X}(\mathrm{MeV})$	$\Gamma_{\gamma \gamma} \mathcal{B}(\mathrm{eV})$	
			Central value	UL
$\chi_{c 2}(1 P)$	3556.20 ± 0.09	1.97 ± 0.11	$7.2_{-4.4}^{+5.5} \pm 2.9$	15.7
$\eta_{c}(2 S)$	3638.5 ± 1.7	13.4 ± 5.6	$65_{-44}^{+47} \pm 18$	133
$X(3872)$	3871.57 ± 0.25	3.0 ± 2.1	$-4.5_{-6.7}^{+7.7} \pm 2.9$	11.1
$X(3915)$	3915.0 ± 3.6	17.0 ± 10.4	$-13_{-12}^{+12} \pm 8$	16
$\chi_{c 2}(2 P)$	3927.2 ± 2.6	24 ± 6	$-16_{-14}^{+15} \pm 6$	19

Using $B\left(\chi_{c 2}(1 P) \rightarrow K_{s}^{0} K^{ \pm} \pi^{\mp}\right)$ and $B\left(\eta_{c}(2 S) \rightarrow K_{s}^{0} K^{ \pm} \pi^{\mp}\right)$ we obtain:

$$
\begin{aligned}
& \mathrm{B}\left(\chi_{c 2}(1 P) \rightarrow \eta_{c}(1 S) \pi \pi\right)<2.2 \% @ 90 \% \mathrm{CL} \\
& \mathrm{~B}\left(\eta_{c}(2 \mathrm{~S}) \rightarrow \eta_{c}(1 S) \pi \pi\right)<7.4 \% @ 90 \% \mathrm{CL}
\end{aligned}
$$

Analysis $\gamma \gamma \rightarrow \mathrm{J} / \psi \omega$: motivation

Y(3940)

- Discovered by BELLE in B $\rightarrow \mathbf{J} / \psi \omega \mathbf{K}$ PRL 94, 182002 (2005)
- Confirmed by BaBar: PRD 82, 011101(R) 2010 but lower mass and width were observed

Y(3940)	Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Width (MeV)
BABAR	$3914.6_{-3.4}^{+3.8} \pm 2.0$	$34_{-8}^{+12} \pm 5$
BELLE	$3943 \pm 11 \pm 13$	$87 \pm 22 \pm 26$

In this analysis also $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \omega$ was seen

$$
\operatorname{Prob}\left(\mathrm{J}^{\mathrm{P}}=2^{-}\right)=62 \% ; \operatorname{Prob}\left(\mathrm{J}^{\mathrm{P}}=1^{+}\right)=7 \%
$$

- Even more interesting: $\gamma \rightarrow \mathrm{J} / \psi \omega$ from BELLE PRL 104, 092001 (2010)
New state observed: X(3915)
State not confirmed: X(3872)
Implications on the quantum numbers of :
$\mathrm{X}(3872)$: BABAR in favor of $\mathrm{J}^{\mathrm{P}}=2-$, but $1+$ not ruled out
$X(3915)$: interpretation in favor of $\chi_{\mathrm{co}}(2 \mathrm{P})$ or $\chi_{\mathrm{c} 2}(2 \mathrm{P})$
Are $Y(3940)$ and $X(3915)$ the same structure?
 Analysis e+e- $\rightarrow J / \psi \omega$: result's

	BABAR	Belle
Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$3919.4 \pm 2.2 \pm 1.6$	$3915 \pm 3 \pm 2$
Width (MeV)	$13 \pm 6 \pm 3$	$17 \pm 10 \pm 3$
$\Gamma_{\gamma \gamma} \times \mathcal{B}(\mathrm{J}=0)(\mathrm{eV})$	$52 \pm 10 \pm 3$	$61 \pm 17 \pm 8$
$\Gamma_{\gamma \gamma} \times \mathcal{B}(\mathrm{J}=2)(\mathrm{eV})$	$10.5 \pm 1.9 \pm 0.6$	$18 \pm 5 \pm 2$

PRELIMINARY

BELLE

- No observation of X(3872)
- New limit (under the hypothesis J=2):

$$
\Gamma_{\gamma \gamma}[X(3872)] \times \mathcal{B}(X(3872) \rightarrow J / \psi \omega)<1.7 \mathrm{eV}
$$

- Assignment of spin parity to $X(3915)$: the analysis is ongoing...

Conclusions

- Several new charmonium analyses are going on in BaBar: interesting new preliminary results have been shown.

ISR production (states with $\mathrm{J}^{\mathrm{PC}}=1^{--}$)

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \mathrm{J} / \psi \pi^{+} \pi^{-}$
- confirmation of $\mathrm{Y}(\mathbf{4 2 6 0})$, now known with higher precision
- $\mathrm{Y}(4008)$ not confirmed
- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$
- confirmation of $\mathrm{Y}(\mathbf{4 3 6 0})$, now known with higher precision
- confirmation of $\mathrm{Y}(4660)$
$\gamma \gamma$ interactions (states with $\mathrm{J} \neq 1$)
$-\gamma \gamma \rightarrow \eta_{c} \pi^{+} \pi^{-}$
- upper limit for $\chi_{\mathrm{c} 2}(1 \mathrm{P}) \rightarrow \eta_{\mathrm{c}}(1 \mathrm{~S}) \pi^{+} \pi^{-}$and $\left.\eta_{\mathrm{C}}(2 \mathrm{~S}) \rightarrow \eta_{\mathrm{c}}(1 \mathrm{~S}) \pi^{+} \pi^{-}\right)$was set up
${ }^{-} \gamma \gamma \rightarrow J / \psi \omega$
- observation of X(3915)
- X(3872) not observed

