Measurement of D^0 - \overline{D}^0 Mixing and CP Violation at BaBar

Giulia Casarosa

SLAC National Accelerator Laboratory
INFN & Università di Pisa

on behalf of the BaBar Collaboration

Charm 2012

The 5th International Workshop on Charm Physics

14-17 May 2012, Honolulu, Hawai'i

- → Mixing and *CP* Violation in the Charm Sector
- → D⁰ Lifetime Ratio Analysis at *BaBar*
 - → Dataset & Backgrounds
 - → Fit Strategy & PDFs
 - → Fit Validation & Systematics
 - → Results & Interpretation
- → Conclusions

Flavour Mixing and CPV in the Charm Sector

→ Mixing occurs when flavour eigenstates differ from mass eigenstates:

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D^0}\rangle$$
 with $|p|^2 + |q|^2 = 1$ (CPT conserved), $CP |D^0\rangle = + |\overline{D^0}\rangle$

Mixing Parameters

$$X = \frac{m_1 - m_2}{\Gamma_D} \qquad \text{ft} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma_D}$$

$$y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma_D}$$

 $m_{1,2}$ and $\Gamma_{1,2}$ are mass and width of $|D_{12}\rangle$ and $\Gamma_D = (\Gamma_1 + \Gamma_2)/2$

- **CP Violation** can occur in 3 ways:
 - in decay: $|A_f| \neq |\overline{A}_{\overline{f}}|$
 - in mixing: $r_m = |q/p| \neq 1$
 - in the interference: $\phi_f \neq 0$

$$\lambda_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} = \left| \frac{q}{p} \right| \left| \frac{\overline{A}_{f}}{A_{f}} \right| \exp \left[i \left(\Delta_{f} + \phi_{f} \right) \right]$$
strong + weak phase

$$\overline{\underline{A}}_{\overline{f}} = \langle \overline{D}^{0} | \mathcal{H} | \overline{f} \rangle
\overline{\underline{A}}_{f} = \langle \overline{D}^{0} | \mathcal{H} | \overline{f} \rangle
\overline{\underline{A}}_{f} = \langle D^{0} | \mathcal{H} | \overline{f} \rangle$$

Theoretical predictions ...

- virtual down type quarks involved in mixing loop (only in D system);
- b contribution CKM suppressed; s and d contributions GIM suppressed;
- possible New Physics (NP) contributions comparable to the SM ones;

- long-range contributions expected to be dominant;
- large theory uncertainties on their estimation;
- \rightarrow The SM predictions for the mixing parameters vary in a range from 10^{-2} to 10^{-7} ;
- [IJMP, A21:5686 (2006)] → (SM) CP Violation was expected to be below the experimental sensitivity.

experimental situation

First evidence of CPV in the charm sector:

LHCb: $\Delta A_{CP}(D^0 \to KK - D^0 \to \pi\pi) = (-0.82 \pm 0.21^{stat} \pm 0.11^{syst})$ [PRL 108 111602 (2012)]

CDF: $\Delta A_{CP}(D^0 \to KK - D^0 \to \pi\pi) = (-0.62 \pm 0.21^{stat} \pm 0.10^{syst})$ [CDF note 10784 (2012)]

Interpretation is not straightforward, can't say if it's NP or SM.

 \rightarrow The no-mixing hypothesis is excluded at 10 σ but no single measurement exceeds 5o.

Mixing and CPV with Lifetime Ratio Analysis

Other experimental observables sensitive to mixing and to CP Violation:

Mixing & CPV observables

$$y_{CP} = \frac{\Gamma(CP+)}{\Gamma_{D}} - 1$$
 & $\Delta Y = \frac{\Gamma(CP+)}{\Gamma_{D}} A_{\Gamma}$

$$\Gamma(\mathsf{CP+}) = [\Gamma(\mathsf{D}^0 \to \mathsf{CP+}) + \Gamma(\overline{\mathsf{D}}^0 \to \mathsf{CP+})]/2$$

> In terms of the mixing & CPV parameters:

$$y_{CP}^{hh} = y \cos \phi_{bh} + \frac{1}{2} \left[A_M + A_D^{hh} \right] x \sin \phi_{bh} - \frac{1}{4} A_M A_D^{hh} y \cos \phi_{bh}$$

$$\Delta Y^{hh} = -x \sin \phi_{bh} + \frac{1}{2} \left[A_M + A_D^{hh} \right] y \cos \phi_{bh} + \frac{1}{4} A_M A_D^{hh} x \sin \phi_{bh}$$

$$CPV \text{ in mixing:}$$

$$A_M = \frac{r_m^2 - r_m^{-2}}{r_m^2 + r_m^{-2}}$$

$$A_{\Gamma} = \frac{\Gamma(D^{0} \to CP+) - \Gamma(\overline{D}^{0} \to CP+)}{\Gamma(D^{0} \to CP+) + \Gamma(\overline{D}^{0} \to CP+)}$$

$$\Gamma(CP+) = \text{effective D}^{0} \text{ width}$$
for decays to CP+ eigenstates

$$A_D^{hh} = rac{|A_{hh}/ar{A}_{hh}|^2 - |ar{A}_{hh}/A_{hh}|^2}{|A_{hh}/ar{A}_{hh}|^2 + |ar{A}_{hh}/A_{hh}|^2}$$

CPV in mixing:
$$A_M = \frac{r_m^2 - r_m^{-2}}{r_m^2 + r_m^{-2}}$$

- in general, both observables depend on the final state
- sensitivity to direct CPV $\sim 10^{-4}$, below our current experimental precision [J.Phys.G G39. 045005 (2012)]
- in the SM, φ is the same for all the final states to a very good approximation [PRD 80. 076008 (2009)]
- in case of no *CP* violation: $y_{CP} = y$ and $\Delta Y = 0$.

- → Mixing and *CP* Violation in the Charm Sector
- → D⁰ Lifetime Ratio Analysis at *BaBar*
 - → Dataset & Backgrounds
 - → Fit Strategy & PDFs
 - → Fit Validation & Systematics
 - → Results & Interpretation
- → Conclusions

D⁰ Lifetime Ratio Analysis at BaBar

 \rightarrow Extract y_{CP} and ΔY from the full Y(4S) BaBar data sample, $L_{DATA} = 468 \text{ fb}^{-1}$

5 signal channels(*):

$$\begin{array}{ll} \textit{flavour} \\ \textit{tagged} \\ & D^{*+} \rightarrow D^0 \ \pi_s^{\ +}; \ D^0 \rightarrow K^+K^- \\ & D^{*+} \rightarrow D^0 \ \pi_s^{\ +}; \ D^0 \rightarrow \pi^+\pi^- \\ & D^{*+} \rightarrow D^0 \ \pi_s^{\ +}; \ D^0 \rightarrow K^-\pi^+, K^+\pi^- \\ \end{array}$$

$$\begin{array}{ll} \textit{flavour} \\ & D^0 \rightarrow K^+K^- \\ & D^0 \rightarrow K^-\pi^+, K^+\pi^- \\ \end{array}$$

we perform a **simultaneous fit** to the tagged and the untagged modes and extract Γ_D from $K\pi$ final state, and $\Gamma(D^0 \to CP+)$ and $\Gamma(\overline{D}^0 \to CP+)$ from

 $\Gamma(D^0 \to CP+)$ and $\Gamma(D^0 \to CP+)$ from KK and $\pi\pi$ final states

- Experimental assumptions:
 - small mixing (|x|, |y| << 1) → proper time distribution are exponential with effective lifetimes to a very good approximation;

• not sensitive to direct CPV + weak phase φ does not depend on final state \rightarrow KK and $\pi\pi$ modes share common effective lifetimes,

✓ crosscheck fit on data.

$$y_{CP} = \underline{y\cos\phi} + \frac{A_M}{2}x\sin\phi$$

$$\Delta Y = -x\sin\phi + \frac{A_M}{2}y\cos\phi$$

Reconstruction and Selection Criteria

- → to benefit from the simultaneous fit to the 5 modes, we ensure that the resolutions of tagged and untagged modes are as similar as possible:
 - reconstruction of the tagged candidates is done without using the additional information coming from the slow pion;
- selection of the signal events:
 - remove D from B decays, p_{cM}(D⁰) > 2.5 GeV/c
 - D⁰ reconstructed mass: 1.80 GeV/c² ≤ m ≤ 1.93 GeV/c²
 - mass difference $\Delta m = m_{p^*} m_p$: 0.14 GeV/c² $\leq \Delta m \leq 0.16$ GeV/c² (tagged only)
 - vertex fit probability: $P(\chi^2) > 0.1\%$
 - apply quality cuts on the D⁰ daughters and the slow pion tracks
 - D⁰ proper time error: $\sigma_t < 0.5$ ps
 - D^0 proper time: -2 ps < t < 4 ps
- the tagged and untagged datasets are independent:
 - events containing a tagged candidate that satisfies $0.1447 \le \Delta m \text{ (GeV/c}^2) \le 0.1463$ are removed from the untagged dataset.

Background Categories

combinatorial background:

- → random tracks,
- → main background,
- → ~ zero-lifetime component,
- extracted from the data sidebands.

in the signal region(*):

	Tagged		Untagged		
	$\pi^-\pi^+$	K^-K^+	$K^{\pm}\pi^{\mp}$	K^-K^+	$K^{\pm}\pi^{\mp}$
Signal	65429	136867	1487000	496200	5825300
	± 262	± 371	± 1220	± 1150	± 2600
Comb. Bkgd.	3760	653	2849	164970	1044552
				± 997	
Charm Bkgd.	97	309	642	5477	4645

charm background:

- → common ancestor of the D⁰ products is a long-living charm meson,
- → very small component of the events in the signal region (<0.7%),</p>
- → has a signal-like long lifetime,
- → studied on MC sample 10 x L_{DATA}
- extracted from MC.

	Mode	Fractio	nal brea	kdown of	Charm	Bkgd. (%)
/	$D^0 o X \ell u$	15.4	10.3	29.9	7.2	≤ 2
	$D^0 \to K^- \pi^+$	80.8	14.9	57.1	8.8	35.8
	$D^0 ightarrow \pi^0 \pi^+ K^-$	1.1	70.3	1.7	63.3	6.9
	$D^+ \to \pi^+\pi^+K^-$	≤ 1	2.9	≤ 1	11.8	≤ 2
	$D^0 \to K^+K^-$	≤ 1	≤ 1	1.3	≤ 1	3.5
	$D^0 o \pi^+\pi^-$	1.8	≤ 1	2.2	≤ 1	3.1
	$D^0 ightarrow \pi^+\pi^-\pi^0$	≤ 1	≤ 1	7.0	≤ 1	17.3
	Λ decays	≤ 1	≤ 1	≤ 1	4.9	2.6

- → Mixing and *CP* Violation in the Charm Sector
- → D⁰ Lifetime Ratio Analysis at *BaBar*
 - → Dataset & Backgrounds
 - → Fit Strategy & PDFs
 - → Fit Validation & Systematics
 - → Results & Interpretation
- → Conclusions

Data Samples for the Lifetime Fit

 \rightarrow we select events in a (m_D, Δ m) region for the tagged modes.

we select events in a mass region for the untagged modes.

→ An *optimization* of the signal region was performed for each of the 5 modes, directly on data, in order to reduce the effect of the proper time VS mass correlation.

Lifetime Fit Strategy

→ step1: extraction of the background yields

- fit the mass distributions in data and extract the background yields;
- repeat the fit in MC and compute a correction factor for the bkg yields.

→ step2a: extraction of the background shapes

- extract charm background PDF from MC;
- extract the combinatorial background PDF from the data sidebands;

→ step2b: simultaneous fit in the signal box

- fix the background shapes in the signal box extracted in step2a;
- fix the background yields in the signal box extracted in mass fits in step1 except for the combinatorial in the untagged KK mode;
- extract the signal PDF by fitting the signal box (t, σ_t) distribution to a sum of signal, charm and combinatorial background PDFs.

Data Mass Fit

The Signal Lifetime Simultaneous PDF

conditional PDF = exponential convolved with a resolution function (sum of 3 Gaussians) $\mathcal{R}_X^Y(t,\sigma_t)$ x proper time error PDF $H_{\sigma_t}^{\mathrm{sig}}(\sigma_t)$

 \rightarrow the 3 Gaussians have a **common offset** t_0 and independent scaling factors s_i :

$$\mathcal{R}_{X}^{Y}(t,\sigma_{t}) = f_{t1}\mathcal{D}(t,\sigma_{t};S_{Y}'S_{X}s_{1},t_{0},\tau)$$

$$(1-f_{t1})\Big[f_{t2}\mathcal{D}(t,\sigma_{t};S_{Y}'S_{X}s_{2},t_{0},\tau)$$

$$(1-f_{t2})\mathcal{D}(t,\sigma_{t};S_{Y}'S_{X}s_{3},t_{0},\tau)\Big]$$

differences in D⁰ momentum spectrum:

$$Y = \text{tag, unt } \mathcal{E} S'_{\text{unt}} \equiv 1$$

differences in final state reconstruction:

$$X = K\pi, KK, \pi\pi \in S_{K\pi} \equiv 1$$

$$\mathcal{D}(t, \sigma_t; s, t_0, \tau) = C_{\sigma_t} \int \exp(-t_{\text{true}}/\tau) \exp\left(-\frac{(t - t_{\text{true}} + t_0)^2}{2(s \cdot \sigma_t)^2}\right) dt_{\text{true}}$$

so that the product: $H^{
m sig}_{\sigma_t}(\sigma_t)\cdot \mathcal{D}(t,\sigma_t;s,t_0, au)$ is a properly normalized 2D PDF.

- take into account the mistagged events in tagged KK and $\pi\pi$ modes
- assume untagged KK is 50% D° and 50% D°.

The Background Lifetime PDFs

charm background PDF:

- → signal-like 2d PDF with per-event errors
- → 2 long-lived components
- → extracted from a 10 x L_{DATA} MC sample

combinatorial background PDF:

- → prompt background
- → weighted average of the PDFs extracted from the data sidebands
- → mode-dependent PDF form:
 - tagged modes: fixed-width-bin 2d histogram in (t, σ_t)
 - untagged $K\pi$: adaptive binning 2d histogram in (t, σ_t)
 - untagged KK: signal-like analytic function with per-event error

- → Mixing and *CP* Violation in the Charm Sector
- → D⁰ Lifetime Ratio Analysis at *BaBar*
 - → Dataset & Backgrounds
 - → Fit Strategy & PDFs
 - → Fit Validation & Systematics
 - → Results & Interpretation
- → Conclusions

Fit Validation

- → Tests on *simulated* events:
 - → fit 9 independent signal samples (L_{DATA})
 - → fit 4 independent signal+bkg cocktails (L_{DATA})
 - → studied large ensemble of pure toy datasets

no bias observed in y_{CP} nor on ΔY in MC studies

- → Crosschecks on data:
 - → fit tagged-only and untagged-only channels
 - checked compatibility of tagged and untagged KK (and Kπ) lifetimes in a
 5-mode simultaneous fit
 - → allowed tagged and untagged channels to have independent lifetimes in a 5-mode simultaneous fit

in all data crosschecks, the extracted lifetimes were compatible

 \Rightarrow released assumption of no direct CPV and of mode-independent weak phase ϕ (characterizing CPV in the interference)

KK and $\pi\pi$ results are statistically compatible

Summary of Systematic Uncertainties

BaBar PRELIMINARY

Category	Fit Variation	$ \Delta[y_{CP}] $ (%)	$ \Delta[\Delta Y] $ (%)
Fit Region	width of sigBox	0.057	0.022
rit negion	position of sigBox	0.005	0.001
Signal	KKUnt σ_t signal PDF	0.022	0.0
	Mistag Fraction	0.0	0.0
	D^0 Fraction in KKUnt	0.001	0.0
Charm	lifetimes	0.042	0.001
	yields	0.016	0.0
	yields	0.043	0.002
Combinatorial	weighting parameter	0.004	0.001
	PDF from sidebands	0.066	0.0
Selection	σ_t cut	0.052	0.053
Defection	adjudication	0.028	0.011
	Total Systematic Error	0.124	0.058

total systematics reduced w.r.t. previous BaBar analyses

- tagged-only analysis [PRD 78, 011105 (2008)]
- untagged-only analysis [PRD 80, 071103 (2009)]

- → Mixing and *CP* Violation in the Charm Sector
- → D⁰ Lifetime Ratio Analysis at *BaBar*
 - → Dataset, Selection Criteria & Backgrounds
 - → Fit Strategy & PDFs
 - → Fit Validation & Systematics
 - → Results & Interpretation
- → Conclusions

Proper Time Fit Projections

Lifetime Fit Results & Interpretation

BaBar PRELIMINARY

$$y_{CP} = [0.720 \pm 0.180(\text{stat}) \pm 0.124(\text{syst})]\%$$

$$\Delta Y = [0.088 \pm 0.255(\text{stat}) \pm 0.058(\text{syst})]\%$$

- → exclude no-mixing hypothesis @ 3.3σ
- → no CPV observed

- → most precise single measurement of y_{CP};
- → this result is compatible at least 2% (5%) with previous BaBar result [PRD 80, 071103 (2009)], considering:
 - systematic errors fully (63%) correlated,
 - 40% of the events in the current dataset are also present in the previous datasets (63% correlation);
- → this result supersedes the previous *BaBar* results.

[&]quot;old" \rightarrow (April 2012 HFAG average) excluding the measurement presented here "new" \rightarrow including this measurement and excluding the previous BaBar one 21

Conclusions

- \Rightarrow We have measured the mixing observable y_{CP} and the CP-violating observable ΔY in a simultaneous fit to 5 signal channels;
- → We observe no CP violation;
- \rightarrow We observe a shift of y_{CP} towards lower values, and exclude the no-mixing hypothesis at 3.3 σ significance.

thank you!