Strong decays of $D_{s i}(2700)^{ \pm}$and $D_{s /}^{*}(2860)^{ \pm}$

Ai-Lin Zhang Shanghai University

16 May, 2012

outline

1. Introduction
2. Strong decays of $D_{s 1}(2700)^{ \pm}$and $D_{s j}^{*}(2860)^{ \pm}$
3. Conclusions and discussions

1. Introduction

1. 1 Experiments

-S-wave and P-wave D_{s} is believed established

States	J^{P}	$n^{2 S+1} L_{J}$	j^{p}	PDG note
$D_{S}(1969)^{ \pm}$	0^{-}	$1^{1} S_{0}$	$\frac{1}{2}^{-}$	
$D_{S}^{\star}(2112)^{ \pm}$	1^{-}	$1^{3} S_{1}$	$\frac{1}{2}^{-}$	$J^{P}=?^{?}$ consistent with 1^{-}
$D_{S J}^{\star}(2317)^{ \pm}$	0^{+}	$1^{3} P_{0}$	$\frac{1}{2}^{+}$	J, P need confirmation
$D_{S J}(2460)^{ \pm}$	1^{+}	$1^{1} P_{1}$	$\frac{1}{2}^{+}$	
$D_{S 1}(2536)^{ \pm}$	1^{+}	$1^{3} P_{1}$	$\frac{3}{2}^{+}$	J, P need confirmation
$D_{S 2}(2573)^{ \pm}$	2^{+}	$1^{3} P_{2}$	$\frac{3}{2}^{+}$	$J^{P}=?^{?}$ consistent with 2^{+}

-Higher excited D_{s} is observed

$$
D_{s 1}(2700)^{ \pm}, D_{s J}^{*}(2860)^{+}, \text {and } D_{s J}(3040)^{+}
$$

$D_{s 11}(2700)^{ \pm}$

$D_{s,}^{*}(2860)^{ \pm}$

Phys.Rev.Lett.97,222001(2006)

$$
\begin{gathered}
m\left(D_{s . J}(2860)^{+}\right)=(2856.6 \pm 1.5 \pm 5.0) \mathrm{MeV} / c^{2} \\
\Gamma\left(D_{s . J}(2860)^{+}\right)=(47 \pm 7 \pm 10) \mathrm{MeV} / c^{2}
\end{gathered}
$$

BaBar

$$
\begin{array}{r}
m\left(D_{s, J}^{*}(2860)^{+}\right)=2862 \pm 2_{\text {stat }}\left({ }_{-2}^{+5}\right)_{\text {syst }} \mathrm{MeV} / c^{2} \\
\Gamma=48 \pm 3_{\text {stat }} \pm 6_{\text {syst }} \mathrm{MeV}, \\
\frac{\mathcal{B}\left(D_{s, J}^{*}(2860)^{+} \rightarrow D^{*} K\right)}{\mathcal{B}\left(D_{s, J}^{*}(2860)^{+} \rightarrow D K\right)}=1.10 \pm 0.15_{\text {stat }} \pm 0.19_{\text {syst }}
\end{array}
$$

Mass: $2862_{-2.8}^{+5.4} \mathrm{MeV}$;
Decay width: $48 \pm 7 \mathrm{MeV}$;
Branching ratio : $\Gamma\left(\mathrm{D}^{*} \mathrm{~K}\right) / \Gamma(\mathrm{D} \mathrm{K})=1.10 \pm 0.24$.

1. 2 Theories

References

-Relativized quark model

-Heavy quark symmetry theory'

- S. Godfrey and N.Isgur, Phys. Rev, D32, 189(1985)

- F.E. Close and E.S. Swanson, Phys, Rev, D72, 094004(2005)
-E.J. Eichten, C.T. Hill and C. Quigg, Phys. Rev, Lett. 71, 4116(1993)
- M.Di Pierro and E. Eichten, Phys. Rev. D64, 114004(2001)
-M.A. Nowak, M. Rho and I. Zahed, Phys. Rev. D48, 4730(1993)
- W.A. Bardeen and C. T. Hill, Phys. Rev. D49, 409(1994)
\bullet W.A. Bardeen, E.J. Eichten and C.T. Hill, Phys. Rev. D68, 054024(2003)
- T.J. Allen, T. Coleman, M.G. Olsson and S. Veleli, Phys. Rev. D69, 074010(2004)
-Hong-Yun Shan and Ailin Zhang, Chin. Phys. C34, 16(2010).
- Bing Chen, Deng-Xia Wang and Ailin Zhang, Phys.

Rev. D80, 071502(R)(2009)

-Coupled channels models

-Lattice QCD

- Other models

-Review

- Eef van Beveren and George Rupp, Phys. Reva Lett.

91, 012003(2003)

- Yu.A. Simonov and J.A. Tjon, Phys. Rev. D7O,

114013(2004)

- Eef van Beveren and George Rupp, Phys. Rev, Lett. 97, 202001(2006)
-J. Hein, et al., Phys. Rev. D62, 074503(2000)
- Yu.S. Kalashnikova, A.V. Nefediev and Yu. A. Simonov, Phys. Rev. D64, 014037(2001)
\bullet.J. Erdmenger, N. Evans and J. Grosse, JHEP 0701, 098(2007)
- P. Colangelo, F. De Fazio and R. Ferrandes, Mod. Phys. Lett. A19, 2083(2004)
-E.S. Swanson, Phys. Rept. 429, 243(2006)
- J.L. Rosner, J. Phys. G34, S127(2007)
-Shi-Lin Zhu, Int. J. Mod. Phys. E17, 28(2008)

Two kinds of classification schemes of \boldsymbol{D}_{s}
-Nonrelativistic:

$n^{2 S+1} L_{J}$

-Heavy quark symmetric:
$n^{\boldsymbol{F}}{ }^{P}$

- Physical states may not be the ${ }^{2 s+1} L_{j}$ or the \boldsymbol{j}^{P} eigenstates!
- Mixing between orbital P-wave
- Mixing between orbital D-wave

- Mixing between the orbital Dwave /1- $^{-}$and the first radial S-wave (1-)

$$
\begin{array}{r}
\left|(S D)_{1}\right\rangle_{L}=\cos \theta\left|2^{3} S_{1}\right\rangle-\sin \theta\left|1^{3} D_{1}\right\rangle \\
\left|(S D)_{1}\right\rangle_{R}=\sin \theta\left|2^{3} S_{1}\right\rangle+\cos \theta\left|1^{3} D_{1}\right\rangle,
\end{array}
$$

${ }^{3} P_{0}$ model: the elementary process is described by the creation of a q q pair with the quantum numbers of the vacuum, $J^{P C}=0^{++}$, in the final state (A. Le Yaouanc, L. Oliver, O. Pene and J.C. Raynal, Phys. Rev. D8, 2223(1973); D 11, 1272(1975))

$D_{s 1}(2700)^{ \pm}$	Reference
$2^{3} S_{1}\left[2 S\left(1^{-}, \frac{1}{2}\right)\right]$	CTLS[A-1]: Mass $\sqrt{ }$, width \times : CWZ[A-2]: Mass J; Width J:ratio ?: CFNR[A-3]: Width J:ratio J:
$1^{3} D_{1}\left[1 D\left(1^{-}, \frac{3}{2}\right)\right]$	ZLDZ[A-4]: Width f:ratio \times;
Mixing state	LM[A-5,6]: Width J: ratio $J:\left\{2^{3} S_{1}\right\}$ zZ[A-7]: Width $\sqrt{\text { : ratio } \sqrt{ }:\left\{1^{3} D_{1}^{\}},\right\}}$

$D_{\text {sJ }}(2860)^{ \pm}$	Reference
$2^{3} P_{0}\left[2 P\left(0^{+}, \frac{1}{2}\right)\right]$	$\begin{gathered} \text { BR[B-1]: Mass } \sqrt{\text { : }} \\ \text { CTLS[B-2]: Mass } 5 \text {, width } \times \text { : } \end{gathered}$
$1^{3} D_{3}\left[1 D\left(3^{-}, \frac{5}{2}\right)\right]$	CFN[B-3]: Mass S?; Width V:ratio \times : CWZ[B-4]: Mass J: Width J: ratio ?: ZLDZ[B-5]: Width J:ratio \times :
other	EFG[B-6]: (tetraquark) Mass J: EFG[B-7]: (Mixing state; two largely over-lapping resonances) Mass S: decay width f: branching ratio 5

literature :

Inconsistence within the ${ }^{3} \mathrm{P}_{0}$ model

F.E.Close, et al.

 Phys.Lett.B 647,159 (2007)$$
\begin{aligned}
& \left|D_{s}^{*}(2690)\right\rangle \approx \frac{1}{\sqrt{5}}(-2|1 S\rangle+1|1 D\rangle), \\
& \left|D_{s}^{*}(2810)\right\rangle \approx \frac{1}{\sqrt{5}}(|1 S\rangle+2|1 D\rangle)
\end{aligned}
$$

a mixing angle consistent with -0.5 radians.
with a broad width, greater than 200 MeV .

D-M.Li and B. Ma Phys. Rev. D 81, 014021 (2010)

$$
\begin{gathered}
\left|D_{s 1}(2710)\right\rangle=\cos \theta\left|2^{3} S_{1}\right\rangle-\sin \theta\left|1^{3} D_{1}\right\rangle \\
\left|D_{s 1}\left(M_{X}\right)\right\rangle=\sin \theta\left|2^{3} S_{1}\right\rangle+\cos \theta\left|1^{3} D_{1}\right\rangle,
\end{gathered}
$$

$$
1.12 \leq \theta \leq 1.38 \text { radians }
$$

2. Strong decays of $D_{s 1}(2700)^{ \pm}$and $D_{s, l}^{*}(2860)^{ \pm}$

The decay width for a process $A \rightarrow B C$ is evaluated as follows

- Ling Yuan, Bing Chen and Ailin Zhang, arXiv:1203.0370

$$
\Gamma=\pi^{2} \frac{|\vec{K}|}{M_{A}^{2}} \sum_{J L}\left|M^{J L}\right|^{2}
$$

Relevant simple harmonic oscillator (SHO) wave functions

$$
\begin{aligned}
\Psi_{n L M_{L}}= & \frac{1}{\beta^{\frac{3}{2}}}\left[\frac{2^{l+2-n}(2 l+2 n+1)!!}{\sqrt{\pi} n![(2 l+1)!!]^{2}}\right]^{\frac{1}{2}} \\
& \times\left(\frac{k}{\beta}\right)^{l} \exp \left[-\frac{1}{2}\left(\frac{k}{\beta}\right)^{2}\right] \\
& \times F\left(-n, l+3 / 2,\left(\frac{k}{\beta}\right)^{2}\right) Y_{L M_{L}}\left(\Omega_{p}\right)
\end{aligned}
$$

Mode	$D^{\star} K$	$D K$	$D_{s}^{\star} \eta$	$D_{s} \eta$	$D K^{\star}$	$D_{s} \omega$	$\Gamma_{\text {totall }} \Gamma\left(D^{\star} K\right) / \Gamma(D K)$	
$D_{s 1}(2700)\left[2^{3} S_{1}\right]$	41.4	9.4	2.0	2.0	-	-	54.8	4.4
$D_{s 1}(2700)\left[1^{3} D_{1}\right]$	39.1	93.8	2.0	16.7	-	-	151.6	0.42
$D_{s J}(2860)\left[1^{3} D_{3}\right]$	22.7	32.8	0.7	1.9	2.1	0.1	60.3	0.69

Mixing states

The way of choice of β plays an important role in the interpretation of these two states

Decay widths and branching fraction ratio

$D_{s 1}^{\star}(2700)^{ \pm}$

$$
-88^{\circ} \leq \theta \leq-76^{\circ} .
$$

Decay widths and branching fraction ratio

$$
\begin{aligned}
& D_{s, J}^{\star}(2860)^{ \pm} \\
& -80^{\circ} \leq \theta \leq-73^{\circ} .
\end{aligned}
$$

Decay widths and branching fraction ratio

Decay widths and branching fraction ratio

3. Conclusions and discussions

There are some uncertainties within the ${ }^{3} \mathrm{P}_{0}$ model, the way of choice of β plays an important role in the interpretation of these two states

The interpretations of $D_{s 1}(2700)^{ \pm}$and $D_{s J}^{*}(2860)^{ \pm}$are the same for different ways of choices of β when there is no mixing

If mixing between the two higher excited 1^{-}states exist, $D_{s 1}(2700)^{ \pm}$and $D_{s J}^{*}(2860)^{ \pm}$could be interpreted as the two orthogonal mixed states with mixing angle $\boldsymbol{\theta} \approx-80^{\circ}$ in the case of a special β for each meson.

However, in the case of a universal β for all mesons, $D_{s 1}(2700)^{ \pm}$could be interpreted as the mixed state of $2^{3} S_{1}$ and $1^{3} D_{1}$ with mixing angle $12^{\circ}<\theta<21^{\circ}$ but $D_{s,}^{*}(2860)^{ \pm}$seems difficult to be interpreted as the orthogonal partner of $D_{s 1}(2700)^{ \pm}$

Be careful to draw conclusions within the ${ }^{3} P_{0}$ model

More experiment on other branching ratio is required $D_{s}^{*} \eta$, $D_{s} \eta$

Study in other models on strong decays for cross check

Study of other kinds of decays

Other analyses

Thanks!

