Higher-order corrections to exclusive production of charmonia in NRQCD

Chaehyun Yu (KIAS)

In collaboration with Ying Fan and Jungil Lee (Korea Univ.)

Contents

NRQCD and matrix elements

•
$$e^+e^- \rightarrow J/\psi + \eta_c$$

•
$$e^+e^- \rightarrow \eta_c + \gamma$$

•
$$e^+e^- \rightarrow J/\psi + J/\psi$$

Conclusions

NRQCD

 NRQCD: an effective field theory of QCD to describe the production and decay of heavy quarkonium.

$$\sigma(ij \to Q + X) \sim \sum_{n} \hat{\sigma}_{\Lambda}(ij \to Q\bar{Q}(n) + X) \langle \mathcal{O}^{Q}(n) \rangle_{\Lambda}$$

Bodwin, Braaten, Lepage, PRD 51, 1125 (1995)

- factorization: proven in exclusive processes, but not yet in inclusive processes.

 Bodwin,Tormo,Lee,PRL101(2008),PRD81(2010)
- Short distance coefficients: encode high energy effects related to the production of a heavy quark and anti-quark pair.
 - expanded in terms of the strong coupling constant.
- NRQCD matrix elements: low energy effects.
 - scale as the heavy-quark velocity v.

NRQCD matrix elements

- the probability to find a corresponding Fock state.
- nonperturbative, but calculable in lattice simulation in principle.
 - suffers from large uncertainties.
- universal (process independent)
 - holds up to corrections of v^4 in the vacuum saturation approximation.

$$\langle \text{decay ME} \rangle = \langle \text{production ME} \rangle$$

- Practically,
- color-singlet MEs: determined from exclusive electromagnetic decays of heavy quarkonium.
- color-octet MEs: fitted to the heavy-quarkonium production cross section by assuming $\langle \text{decay ME} \rangle = \langle \text{production ME} \rangle$ for the CS MEs.

NRQCD matrix elements

- the probability to find a corresponding Fock state.
- nonperturbative, but calculable in lattice simulation in principle.
 - suffers from large uncertainties.
- universal (process independent)
 - holds up to corrections of v^4 in the vacuum saturation approximation.

- Practically,
- color-singlet MEs: determined from exclusive electromagnetic decays of heavy quarkonium.
- color-octet MEs: fitted to the heavy-quarkonium production cross section by assuming $\langle \text{decay ME} \rangle = \langle \text{production ME} \rangle$ for the CS MEs.

Color octet matrix elements

- inclusive production of heavy quarkonium favors the color-octet mechanism in NRQCD.
- a lot of NRQCD matrix elements are involved in inclusive production.
- 1 color-singlet, 3 color-octet matrix elements for J/ ψ and several matrix elements for higher-states, ψ' and χ_{cJ} , in the J/ ψ production.
 - the color-singlet matrix elements are used for inputs.
- the color-octet matrix elements are fitted to the data for the J/ ψ production rate from various hadroproduction, photoproduction, two-photon scattering and electron-positron scattering.

Buthnschoen, Kniehl, 1201.3862; Ma, Wang, Chao, PRL 106

- the inclusive production may not be applied to test the production colorsinglet matrix elements.
 - have to resort to the exclusive process. (at B factories)

Higher-order corrections

- 1. α_s corrections
 - have been computed in a lot of processes.
- 2. relativistic corrections+resummation
 - have been computed in some processes.
- 3. QED corrections
 - may be substantial for the J/ ψ production. (photon fragmentation)
- 4. α_s^2 corrections
 - known only in $J/\psi \rightarrow e^+e^-, \eta_c \rightarrow \gamma\gamma$.
- 5. $\alpha_s v^2$ corrections
 - known only in $J/\psi \rightarrow e^+e^-, \eta_c \rightarrow \gamma\gamma, B_c \rightarrow l\nu$.

unknown in the production processes

interference

Relativistic corrections to S-wave quarkonium

 parameterized by ratios of matrix elements of higher orders in v to the leading-order one.

$$\langle \boldsymbol{q}^{2n} \rangle_{J/\psi} = \frac{\langle J/\psi(\lambda) | \psi^{\dagger}(-\frac{i}{2}\overrightarrow{\boldsymbol{D}})^{2n} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}(\lambda) \chi | 0 \rangle}{\langle J/\psi(\lambda) | \psi^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}(\lambda) \chi | 0 \rangle}$$

 short-distance coefficients are determined by expanding the amplitude in terms of the relative momentum q.

$$A[J/\psi + X] = \sum_{n} \left[\frac{1}{n!} \left(\frac{\partial}{\partial \mathbf{q}^{2}} \right)^{n} H(\mathbf{q}^{2}) \right]_{\mathbf{q}^{2} = 0} \left\langle \mathbf{q}^{2n} \right\rangle_{J/\psi} \left\langle O_{1} \right\rangle_{J/\psi}^{1/2}$$

Gremm-Kapustin relation

Gremm, Kapustin, PLB407, 323 (1997)

$$\langle \boldsymbol{q}^2 \rangle \approx \epsilon_{\rm B} m_c = (M_H - 2 m_c) m_c$$
 ϵ_B :binding energy

the binding energy can be obtained in the potential model.

Resummation of relativistic corrections

generalized Gremm-Kapustin relation for S-wave quarkonium

$$\langle {m q}^{2n}
angle pprox (m_c \epsilon_{
m B})^n pprox \langle {m q}^2
angle^n$$
. Bodwin,Kang,Lee,PRD74,014014(2006)

allows one to resum a class of relativistic corrections to all orders in v.

$$A[J/\psi + X] = \sum_{n} \left[\frac{1}{n!} \left(\frac{\partial}{\partial \mathbf{q}^{2}} \right)^{n} H(\mathbf{q}^{2}) \right]_{\mathbf{q}^{2} = 0} \left\langle \mathbf{q}^{2n} \right\rangle_{J/\psi} \left\langle O_{1} \right\rangle_{J/\psi}^{1/2}$$

$$= H\left(\left\langle \mathbf{q}^{2} \right\rangle_{J/\psi} \right) \left\langle O_{1} \right\rangle_{J/\psi}^{1/2}$$

Resummation of relativistic corrections

generalized Gremm-Kapustin relation for S-wave quarkonium

$$\langle {m q}^{2n}
angle pprox (m_c \epsilon_{
m B})^n pprox \langle {m q}^2
angle^n$$
. Bodwin, Kang, Lee, PRD74,014014(2006)

• allows one to resum a class of relativistic corrections to all orders in v.

$$A[J/\psi + X] = \sum_{n} \left[\frac{1}{n!} \left(\frac{\partial}{\partial \mathbf{q}^{2}} \right)^{n} H(\mathbf{q}^{2}) \right]_{\mathbf{q}^{2}=0}^{n} \left\langle \mathbf{q}^{2n} \right\rangle_{J/\psi} \left\langle O_{1} \right\rangle_{J/\psi}^{1/2}$$

$$= H\left(\left\langle \mathbf{q}^{2} \right\rangle_{J/\psi} \right) \left\langle O_{1} \right\rangle_{J/\psi}^{1/2}$$

- Why is the resummation of relativistic corrections to all orders in v interesting?
 - confirms the convergence of expansion of relativistic corrections.
- in a certain case, much easier to compute the resummation of relativistic corrections than v² corrections.

Comparison of determination of color-singlet matrix elements

- require two inputs to determine the color-singlet matrix elements.
- two ways to determine the relative order-v² matrix elements.

	BCKLY	HFC	
Input experiments	$\Gamma[J/\psi \to e^+e^-]$	$\Gamma[J/\psi \to e^+ e^-]$ $\Gamma[J/\psi \to \text{light hadrons}]$	inputs
Potential	Cornell	-	J
$\left\langle O_{_{1}} ight angle _{_{J/\psi}}$	0.440	0.573	outputs
$\left\langle v^{2}\right\rangle _{J/\psi}$	0.225	0.089	Jourputs

Bodwin, Chung, Kang, Lee, Yu, PRD77, 094017 (2008) He, Fan, Chao, PRD75, 074011 (2007)

Comparison of determination of color-singlet matrix elements

• the main source of the small v^2 value in the HFC method is the large coefficient at order v^2 in the $J/\psi \rightarrow light$ hadrons.

$$\Gamma[J/\psi \to e^{+}e^{-}] = \frac{2e_{c}^{2}\pi\alpha^{2}}{3} \left((1 - \frac{16\alpha_{s}}{3\pi}) \frac{\langle 0|\mathcal{O}_{1}(^{3}S_{1}^{\psi})|0\rangle/3}{m_{c}^{2}} - \frac{4}{3} \frac{\langle 0|\mathcal{P}_{1}(^{3}S_{1}^{\psi})|0\rangle/3}{m_{c}^{4}} \right)$$

$$\Gamma[J/\psi \to LH] = \left(\frac{20\alpha_{s}^{3}}{243} (\pi^{2} - 9) \right) \left((1 - 2.55 \frac{\alpha_{s}}{\pi}) \frac{\langle 0|\mathcal{O}_{1}(^{3}S_{1}^{\psi})|0\rangle/3}{m_{c}^{2}} + \frac{19\pi^{2} - 132}{12\pi^{2} - 108} \frac{\langle 0|\mathcal{P}_{1}(^{3}S_{1}^{\psi})|0\rangle/3}{m_{c}^{4}} \right)$$

He, Fan, Chao, PRD75, 074011 (2007)

- this implies that the BCKLY method might fail to be consistent with the decay width of J/ ψ into light hadrons with v²~0.225.
- the resummation of relativistic corrections to all orders in v might cure this problem.

$$e^+e^- \rightarrow J/\psi + \eta_c$$

- the cross section was a long standing puzzle.
 - an order of magnitude difference between theory and experiments at first.
- later experimental values moved down while theoretical predictions moved up.
- resolved by both the QCD corrections and relativistic corrections.
- K factor from QCD corrections is 1.96.

Zhang, Gao, Chao, PRL96, 092001 (2006); Gong, Wang, PRD77, 054028 (2008)

- Relativistic corrections can come from
 - direct corrections to the short-distance process.
 - indirect corrections through the NRQCD ME.

Bodwin, Lee, Yu, PRD77, 094018 (2008)

$$e^+e^- \rightarrow J/\psi + \eta_c$$

Total cross section = 17.6 fb

Belle	25.6 ± 4.4 fb
BABAR	$17.6 \pm 3.5 \text{ fb}$

Bodwin, Lee, Yu, PRD77, 094018 (2008)

$$e^+e^- \rightarrow J/\psi + \eta_c$$

- The first process to prove that the relativistic corrections are quite substantial.
- It seems that the discrepancy between theory and experiments has been resolved.
- However, there are some debatable issues.

$$e^+e^- \rightarrow J/\psi + \eta_c$$

- The first process to prove that the relativistic corrections are quite substantial.
- It seems that the discrepancy between theory and experiments has been resolved.
- However, there are some debatable issues.
- in experiments gathered data with at least two charged particles for η_{c} decay.
- how large would the cross section be if data without charged particles are included?
 - NNLO corrections, increase or decrease the cross section?
 - indirect $\alpha_s v^2$ corrections turned out to be small (~0.3% for J/ ψ).

Bodwin, Chung, Lee, Yu, PRD79, 014007 (2009)

- direct $\alpha_s v^2$ corrections are also small?

$$e^+e^- \rightarrow \eta_c + \gamma$$

• suggested to test the color-singlet model and the convergence of relativistic corrections, especially for $\eta_c(2S)$ by Chung, Lee, and Yu.

Chung, Lee, Yu, PRD78, 074022 (2008)

- C=+1 quarkonium : $\eta_c, \eta_c(2S), \chi_{cJ}, \eta_b, \chi_{bJ}, \chi(3872)$
- may be detected by photon energy distribution.
- Now α_s corrections and v^2 corrections are available.

Sang, Chen, PRD81 (2010); Li, He, Chao, PRD80 (2009)

$$e^+e^- \rightarrow \eta_c + \gamma$$

Sang, Chen, PRD81 (2010)

	Cross section (fb)	
Leading order	83.3	
QCD corrections	-15.3	~18%
v² corrections	-9.8	~12%
total	58.2	N.B. v ² ~0.13.

• For v²~0.23, v² corrections can reach 21%.

• the resummation of relativistic corrections to all orders in v decreases the cross section by ~17%.

Fan, Lee, Yu, in progress

need to combine QCD and resummed relativistic corrections.

$$e^+e^- \rightarrow J/\psi + J/\psi$$

• originally suggested to resolve the $e^+e^- \rightarrow J/\psi + \eta_c$ puzzle.

Bodwin, Lee, Braaten, PRL90, 162001 (2003)

no evidence at Belle.

$$\sigma[e^+e^- \to J/\psi + J/\psi] \times \mathcal{B}_{>2}[J/\psi] < 9.1 \text{ fb},$$

 $\sigma[e^+e^- \to J/\psi + \psi(2S)] \times \mathcal{B}_{>2}[\psi(2S)] < 5.2 \text{ fb}.$

• disfavored by the angular distribution analysis of $e^+e^- \to J/\psi + \eta_c$ events at Belle.

$$e^+e^- \rightarrow J/\psi + J/\psi$$

photon fragmentation diagram

nonfragmentation diagram

• for the photon fragmentation diagram, the vector-meson-dominance model can be used.

Bodwin, Braaten, Lee, Yu, PRD74,074014(2006)

$$\langle J/\psi(\lambda)|J^{\mu}(x=0)|0\rangle = g_{J/\psi\gamma}\epsilon^{\mu}(\lambda)^{*},$$

$$\Gamma[J/\psi \to e^{+}e^{-}] = \frac{4\pi\alpha^{2}g_{J/\psi\gamma}^{2}}{3m_{J/\psi}^{3}}.$$

• for the photon nonfragmentation diagram, use NRQCD.

$$e^+e^- \rightarrow J/\psi + J/\psi$$

cross section	$J/\psi + J/\psi$	$J/\psi + \psi(2S)$	$\psi(2S) + \psi(2S)$
fragmentation	2.52 ± 0.13	1.81 ± 0.06	0.32 ± 0.02
interference	-0.98 ± 0.48	-1.09 ± 0.60	-0.30 ± 0.19
nonfragmentation	0.15 ± 0.16	0.23 ± 0.29	0.09 ± 0.14
total	1.69 ± 0.35	0.95 ± 0.36	0.11 ± 0.09

Bodwin, Braaten, Lee, Yu, PRD74, 074014(2006)

- The predictions are below the upper bounds at Belle.
- Now only α_s corrections are known. Gong, Wang, PRL100, 181803(2008)

$m_c(\text{GeV})$	μ	$\alpha_s(\mu)$	$\sigma_{LO}(\mathrm{fb})$	$\sigma_{NLO}(\mathrm{fb})$	σ_{NLO}/σ_{LO}
1.5	m_c	0.369	7.409	-2.327	-0.314
1.5	$2m_c$	0.259	7.409	0.570	0.077
1.5	$\sqrt{s}/2$	0.211	7.409	1.836	0.248
1.4	m_c	0.386	9.137	-3.350	-0.367
1.4	$2m_c$	0.267	9.137	0.517	0.057
1.4	$\sqrt{s}/2$	0.211	9.137	2.312	0.253

$$e^+e^- \rightarrow J/\psi + J/\psi$$

- v² corrections have not been computed yet.
- v² corrections are quite complicated because the t-channel electron propagator contains the relativistic corrections.
- in this case, the resummation of relativistic corrections to all orders in v is more promising.

$$\frac{\sigma_{\text{LO,v}}}{\sigma_{\text{LO}}} \sim 0.42$$
 PRELIMINARY Fan, Lee, Yu, in progress

- need to combine α_s and relativistic corrections.
- Very small K factors can be reduced by using the VMD coupling for the photon fragmentation diagrams.

Conclusions

- The exclusive production of charmonia provides a unique opportunity to test a color-singlet model with relativistic corrections.
- We calculated the resummation of relativistic corrections to $e^+e^- \to \eta_c + \gamma$ and $e^+e^- \to J/\psi + J/\psi$ and find that its effects are about 17% and 52%, respectively.
- We anticipate that the cross sections for these exclusive processes will be measured at super B factories.