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Manoa Falls
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Tree loop duality
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UV picture
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Is it a rare phenomena?
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What about the penguins?
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All you need to know for charm physics
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CPV in SCSD decays
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What is new in charm?

We will discuss “one” number

ACP (D → f) ≡ Γ(D → f)− Γ(D̄ → f̄)

Γ(D → f) + Γ(D̄ → f̄)

The data:

∆ACP ≡ ACP (D → K+K−)−ACP (D → π+π−)

= (−0.656± 0.154)% World average

∼ 4σ from zero

Systematic? Statistics? NP? SM?
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What is old in charm?

We need to recall some “old” problems

The KK vs ππ ratio
∣

∣

∣

∣

A(D0 → K+K−)

A(D0 → π+π−)

∣

∣

∣

∣

− 1 = 0.82± 0.02%

When we put the four PP rates together we have
∣

∣A(D0 → K+K−)
∣

∣+
∣

∣A(D0 → π+π−)
∣

∣

|A(D0 → K+π−) |+ |A(D0 → K−π+) | −1 = (4.0±1.6)×10−2

Both relations above vanish in the SU(3) limit
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D → f amplitudes

We talk only about SCS decay into a CP eignestate

We can write the decay amplitude as

A(D → f) = Af

[

1 + rfe
i(δf+φf )

]

A(D̄ → f̄) = Af

[

1 + rfe
i(δf−φf )

]

δf is a strong phase. φf is a weak phase

The whole point is to calculate rf ∼ P/T

The direct CP asymmetry is

aCP = 2rf sin δ sinφ
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D → K+K− diagrams
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What do we refer to as SM amplitudes?

What is the probability of c → ud̄d to give D → K+K−?

Od ≡ 〈K+K−|c̄ud̄d|D0〉

Not zero! We can have ss̄ from the vacuum to generate
K+K−

dd̄ can scatter into ss̄

Is this a tree or penguin?

Perturbative picture is not justified here

Remember Manoa falls!
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SM amplitudes

How to relate the diagrams to the decay amplitudes?

A(D → K+K−) = λdOd + λsOs + λbOb

Oq are the c̄uqq̄ matrix elements. Ob can be neglected

λq = V ∗

cqVuq λd ≈ −λs ≫ λb

Unitarity ⇒ λd = −λs − λb ⇒

A(D → K+K−) ∝ (Os−Od)+ξ(Os+Od) = C
[

1 + rfe
i(δ+γ)

]

where

ξ =
VcbVub
VcsVus

∼ 6×10−4 rf = |ξ|×XH XH =

∣

∣

∣

∣

Os + Od

Os −Od

∣

∣

∣

∣
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How large canXH be?

The asymmetry is aCP ≈ 2× 10−3 ×XH sin δ sin γ

To explain the data we need XH & 3

Naively

XH ∼ P

T
∼ αS(mc)

π
∼ 0.1

We obtain this ratio from B → Kπ and B → ππ

XH ∼ 0.15

In the heavy quark limit

XH(D)

XH(B)
∼ αS(mc)

αS(mb)
∼ 2 ⇒ XH ∼ 0.3
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What can we say aboutXH?

Is the above estimate of XH ∼ 0.3 reliable?

Golden and Grinstein (89); Brod, Kagan, Zupan (11):
XH can be large.

Remember “the ∆I = 1/2 rule”
Unexplained enhancement of factor of about 22 of
“penguin” over “tree”
Very low energy

The “penguin” vs “tree” is a perturbative picture. At low
energy it is all messed up

Maybe charm is more like kaon and what we see is a
similar ∆I = 1/2 rule for charm
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The∆I = 1/2 rule

In the isospin limit, two matrix elements. The data gives
A0/A2 ≈ 22

Only A0 include the “penguins”

Very rough idea: uū in, almost 50% dd̄ out

Isospin breaking can be enhanced by A0

The ∆I = 1/2 rule is a non perturbative enhancement

The data is very accurate

K : 22.45± 0.05 D : 2.50± 0.08 B : 0.96± 0.09

B is heavy, no enhancement. D seems between B and
K. Enhancement of the “penguins”
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The∆U = 0 rule

We can write the reduced amplitudes in term of U spin
reduced matrix elements, including first order breaking

A(D̄0 → π+K−) = (t0 + t1ǫ)

A(D̄0 → K+π−) = (t0 − t1ǫ)

A(D̄0 → π+π−) = (t0 + p1ǫ+ ξp0)

A(D̄0 → K+K−) = (t0 − p1ǫ− ξp0)

p1 is a “broken penguin”

Dynamical assumption p1 ∼ p0 (we saw it in kaons)

Fit the BR data and the asymmetry

p1/t0 ∼ 3
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What should we do next?
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What else can be done?

Zoltan: “While the central value of ∆aCP is much larger
than what was expected in the SM, we cannot yet
exclude that it may be due to a huge hadronic
enhancement in the SM”

Yuval: “While the central value of ∆aCP fits nicely in the
SM, we cannot yet exclude that it may be due to NP”

Topologically the above two statements are
equivalent
Just like a bagel and a mug are
Yet, to emphasize, whether Zoltan, me, or anyone
else is the bagel is not the issue
The issue is how can we keep on checking
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Checks

How can we check if it is SM or NP?

“Easy” for NP to generate a gluonic penguin at the right
size

One check is for CPV in D → V γ

Other modes, like PV , V V and multibody

Measure the separate asymmetries. The U spin
argument predict that they scale like the inverse square
root of the rates

Several isospin relations

The big question: How to determine: SM or NP
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CPV inD − D̄ Mixing
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CPV in the mixing

What is the upper value possible in the SM?

How large the phase can be?

How it is related to the fundamental phase?

How large a CPV observable can be?

Not easy to deal with long distance
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Fish
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How large the phase can be?

Roughly speaking, we are looking for the phase of the
mixing

The short distance phase is O(1)

Long distance dominates, and it is almost real

φ ∼ 6× 10−4 × sin θC√
x, y

At most 10−2
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How large a CPV observable can be?

The phase that appears in the mixing is suppressed by
x/

√

x2 + y2

Any observable is suppressed by x or y

Any CPV observable from mixing is suppressed by at
least 10−4

Seeing it in the near future, will be a signal of NP (I do
take risks!)
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Conclusions
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Conclusions

CPV in charm decays: Is it SM or NP?

CPV in mixing is still expected to be much below current
sensitivity

Go and hike Manoa falls
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