Charming CPV

Yuval Grossman

Cornell

Outline

- Instead of introduction: Field trip to Manoa falls
- CPV in SCS decays
- CPV in mixing
- Conclusion

Educational field trip to Manoa falls

Manoa Falls

M. Bobrowski, YG, Z. Ligeti, May 15, 2012

Tree loop duality

UV picture

Is it a rare phenomena?

What about the penguins?

All you need to know for charm physics

CPV in SCS D decays

What is new in charm?

We will discuss "one" number

$$
\mathcal{A}_{C P}(D \rightarrow f) \equiv \frac{\Gamma(D \rightarrow f)-\Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f)+\Gamma(\bar{D} \rightarrow \bar{f})}
$$

The data:

$$
\begin{aligned}
\Delta \mathcal{A}_{C P} & \equiv \mathcal{A}_{C P}\left(D \rightarrow K^{+} K^{-}\right)-\mathcal{A}_{C P}\left(D \rightarrow \pi^{+} \pi^{-}\right) \\
& =(-0.656 \pm 0.154) \% \quad \text { World average }
\end{aligned}
$$

$$
\sim 4 \sigma \text { from zero }
$$

Systematic? Statistics? NP? SM?

What is old in charm?

We need to recall some "old" problems

- The $K K$ vs $\pi \pi$ ratio

$$
\left|\frac{\mathcal{A}\left(D^{0} \rightarrow K^{+} K^{-}\right)}{\mathcal{A}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)}\right|-1=0.82 \pm 0.02 \%
$$

- When we put the four PP rates together we have

$$
\frac{\left|\mathcal{A}\left(D^{0} \rightarrow K^{+} K^{-}\right)\right|+\left|\mathcal{A}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)\right|}{\left|\mathcal{A}\left(D^{0} \rightarrow K^{+} \pi^{-}\right)\right|+\left|\mathcal{A}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right|}-1=(4.0 \pm 1.6) \times 10^{-2}
$$

- Both relations above vanish in the $\mathrm{SU}(3)$ limit

$D \rightarrow f$ amplitudes

We talk only about SCS decay into a CP eignestate

- We can write the decay amplitude as

$$
\begin{aligned}
& \mathcal{A}(D \rightarrow f)=A_{f}\left[1+r_{f} e^{i\left(\delta_{f}+\phi_{f}\right)}\right] \\
& \mathcal{A}(\bar{D} \rightarrow \bar{f})=A_{f}\left[1+r_{f} e^{i\left(\delta_{f}-\phi_{f}\right)}\right]
\end{aligned}
$$

- δ_{f} is a strong phase. ϕ_{f} is a weak phase
- The whole point is to calculate $r_{f} \sim P / T$
- The direct CP asymmetry is

$$
a_{C P}=2 r_{f} \sin \delta \sin \phi
$$

$D \rightarrow K^{+} K^{-}$diagrams

(P)

What do we refer to as SM amplitudes?

What is the probability of $c \rightarrow u \bar{d} d$ to give $D \rightarrow K^{+} K^{-}$?

$$
O_{d} \equiv\left\langle K^{+} K^{-}\right| \bar{c} u \bar{d} d\left|D^{0}\right\rangle
$$

- Not zero! We can have $s \bar{s}$ from the vacuum to generate $K^{+} K^{-}$
- $d \bar{d}$ can scatter into $s \bar{s}$
- Is this a tree or penguin?
- Perturbative picture is not justified here
- Remember Manoa falls!

SM amplitudes

How to relate the diagrams to the decay amplitudes?

$$
\mathcal{A}\left(D \rightarrow K^{+} K^{-}\right)=\lambda_{d} O_{d}+\lambda_{s} O_{s}+\lambda_{b} O_{b}
$$

- O_{q} are the $\bar{c} u q \bar{q}$ matrix elements. O_{b} can be neglected

$$
\lambda_{q}=V_{c q}^{*} V_{u q} \quad \lambda_{d} \approx-\lambda_{s} \gg \lambda_{b}
$$

- Unitarity $\Rightarrow \lambda_{d}=-\lambda_{s}-\lambda_{b} \Rightarrow$

$$
\mathcal{A}\left(D \rightarrow K^{+} K^{-}\right) \propto\left(O_{s}-O_{d}\right)+\xi\left(O_{s}+O_{d}\right)=C\left[1+r_{f} e^{i(\delta+\gamma)}\right]
$$

where

$$
\xi=\frac{V_{c b} V_{u b}}{V_{c s} V_{u s}} \sim 6 \times 10^{-4} \quad r_{f}=|\xi| \times X_{H} \quad X_{H}=\left|\frac{O_{s}+O_{d}}{O_{s}-O_{d}}\right|
$$

How large can X_{H} be?

The asymmetry is $a_{C P} \approx 2 \times 10^{-3} \times X_{H} \sin \delta \sin \gamma$

- To explain the data we need $X_{H} \gtrsim 3$
- Naively

$$
X_{H} \sim \frac{P}{T} \sim \frac{\alpha_{S}\left(m_{c}\right)}{\pi} \sim 0.1
$$

- We obtain this ratio from $B \rightarrow K \pi$ and $B \rightarrow \pi \pi$

$$
X_{H} \sim 0.15
$$

- In the heavy quark limit

$$
\frac{X_{H}(D)}{X_{H}(B)} \sim \frac{\alpha_{S}\left(m_{c}\right)}{\alpha_{S}\left(m_{b}\right)} \sim 2 \Rightarrow X_{H} \sim 0.3
$$

What can we say about X_{H} ?

Is the above estimate of $X_{H} \sim 0.3$ reliable?

- Golden and Grinstein (89); Brod, Kagan, Zupan (11): X_{H} can be large.
- Remember "the $\Delta I=1 / 2$ rule"
- Unexplained enhancement of factor of about 22 of "penguin" over "tree"
- Very low energy
- The "penguin" vs "tree" is a perturbative picture. At low energy it is all messed up
- Maybe charm is more like kaon and what we see is a similar $\Delta I=1 / 2$ rule for charm

The $\Delta I=1 / 2$ rule

- In the isospin limit, two matrix elements. The data gives $A_{0} / A_{2} \approx 22$
- Only A_{0} include the "penguins"
- Very rough idea: $u \bar{u}$ in, almost $50 \% d \bar{d}$ out
- Isospin breaking can be enhanced by A_{0}
- The $\Delta I=1 / 2$ rule is a non perturbative enhancement
- The data is very accurate

$$
K: 22.45 \pm 0.05 \quad D: 2.50 \pm 0.08 \quad B: 0.96 \pm 0.09
$$

- B is heavy, no enhancement. D seems between B and K. Enhancement of the "penguins"

The $\Delta U=0$ rule

- We can write the reduced amplitudes in term of U spin reduced matrix elements, including first order breaking

$$
\begin{aligned}
A\left(\bar{D}^{0} \rightarrow \pi^{+} K^{-}\right) & =\left(t_{0}+t_{1} \epsilon\right) \\
A\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right) & =\left(t_{0}-t_{1} \epsilon\right) \\
A\left(\bar{D}^{0} \rightarrow \pi^{+} \pi^{-}\right) & =\left(t_{0}+p_{1} \epsilon+\xi p_{0}\right) \\
A\left(\bar{D}^{0} \rightarrow K^{+} K^{-}\right) & =\left(t_{0}-p_{1} \epsilon-\xi p_{0}\right)
\end{aligned}
$$

- p_{1} is a "broken penguin"
- Dynamical assumption $p_{1} \sim p_{0}$ (we saw it in kaons)
- Fit the BR data and the asymmetry

$$
p_{1} / t_{0} \sim 3
$$

What should we do next?

What else can be done?

- Zoltan: "While the central value of $\Delta a_{C P}$ is much larger than what was expected in the SM, we cannot yet exclude that it may be due to a huge hadronic enhancement in the SM"
- Yuval: "While the central value of $\Delta a_{C P}$ fits nicely in the SM, we cannot yet exclude that it may be due to NP"
- Topologically the above two statements are equivalent
- Just like a bagel and a mug are
- Yet, to emphasize, whether Zoltan, me, or anyone else is the bagel is not the issue
- The issue is how can we keep on checking

Checks

How can we check if it is SM or NP?

- "Easy" for NP to generate a gluonic penguin at the right size
- One check is for CPV in $D \rightarrow V \gamma$
- Other modes, like $P V, V V$ and multibody
- Measure the separate asymmetries. The U spin argument predict that they scale like the inverse square root of the rates
- Several isospin relations

The big question: How to determine: SM or NP

CPV in $D-D$ Mixing

CPV in the mixing

What is the upper value possible in the SM?

- How large the phase can be?
- How it is related to the fundamental phase?
- How large a CPV observable can be?

Not easy to deal with long distance

Fish

How large the phase can be?

- Roughly speaking, we are looking for the phase of the mixing
- The short distance phase is $O(1)$
- Long distance dominates, and it is almost real

$$
\phi \sim 6 \times 10^{-4} \times \frac{\sin \theta_{C}}{\sqrt{x, y}}
$$

- At most 10^{-2}

How large a CPV observable can be?

- The phase that appears in the mixing is suppressed by $x / \sqrt{x^{2}+y^{2}}$
- Any observable is suppressed by x or y
- Any CPV observable from mixing is suppressed by at least 10^{-4}
- Seeing it in the near future, will be a signal of NP (I do take risks!)

Conclusions

Conclusions

- CPV in charm decays: Is it SM or NP?
- CPV in mixing is still expected to be much below current sensitivity
- Go and hike Manoa falls

