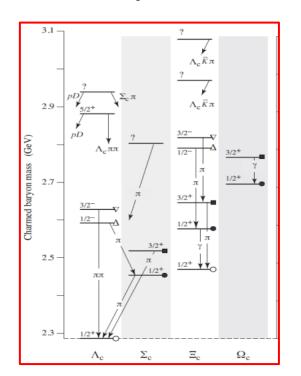
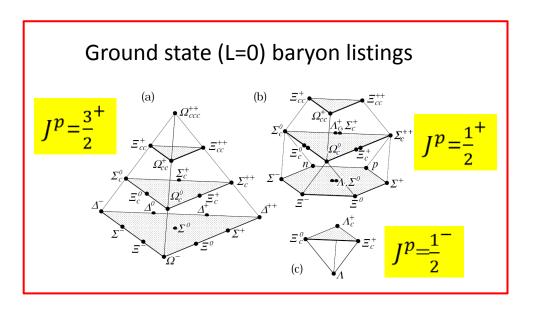


Charmed Baryon Decays and their asymmetries

B.G. Cheon
(Hanyang Univ., Korea)
For the Belle collaboration


Charm2012, 14/May, Hawaii


Contents

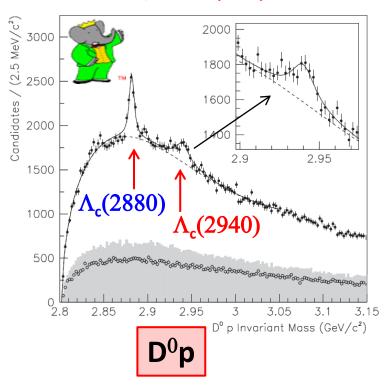
- Introduction
- Spectroscopic strong/EM decays
 - Review of Λ_c , Ξ_c -excitation families.
- Hadronic weak decays
 - Updated results from Belle/BaBar
 - Status of doubly charmed baryon search
- Decay asymmetry
- Summary

Why charmed baryons?

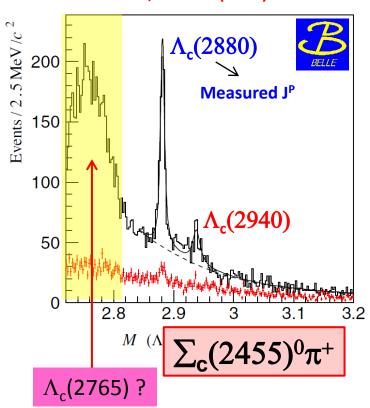
- Charmed baryon strong/EM decays provide lots of excited states.
 - More orbital excitation states (Q+qq) than meson(Q+q).
 - Less phase space for decays and narrower states.
 - Established 17 charmed baryons up to date. (refer PDG).
 - Fruitful experimental results on excited states, but a few unpromoted states.
- Charmed baryon weak decays are suitable to study decay dynamics.
 - Still poor measurements in weak decays of Λ_c^+ , Ξ_c^+ , Ξ_c^0 , Ω_c^0
- Theoretical predictions can be tested and motivated to new approaches.

Strong/EM decays

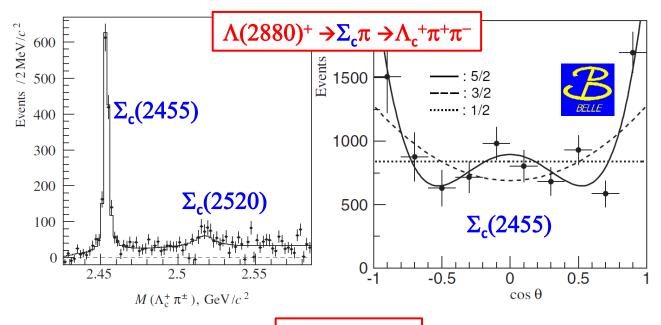
$\Lambda_{\rm c}$ -excitation family



Ехр.	Mode	Mass (MeV/c ²)	Width (MeV)
CLEO	$\Lambda_c(2765)^+ \to \Lambda_c^+ \pi^+ \pi^-$	2766.6 ± 2.4	50
Belle	$\Lambda_c(2765)^+ \to \Sigma_c(2455)^0 \pi^+$	2761 \pm 1	73 ± 5
CLEO	$\Lambda_c(2880)^+ \to \Sigma_c(2455)^0 \pi^+$	2882 ± 1 ± 2	4 ± 2 ± 2
BABAR	$\Lambda_c(2880)^+ \to D^0 p$	$2881.9 \pm 0.1 \pm 0.5$	$5.8 \pm 1.5 \pm 1.1$
Belle	$\Lambda_c(2880)^+ \to \Sigma_c(2455)^0 \pi^+$	$2881.2 \pm 0.2 \pm 0.4$	$5.8 \pm 0.7 \pm 1.1$
BABAR	$\Lambda_c(2940)^+ \to D^0 p$	$2939.8 \pm 1.3 \pm 1.0$	$17.5 \pm 5.2 \pm 5.9$
Belle	$\Lambda_c(2940)^+ \to \Sigma_c(2455)^0 \pi^+$	2938.0 \pm 1.3 $^{2.0}_{-4.0}$	13 +8 +27


- Good consistent among Belle, BaBar and CLEO measurements.
- Isospin singlets : $\Lambda_c(2880)^+$, $\Lambda_c(2940)^+$
 - Due to no isospin partners in D+p @ Babar
 - Belle measured spin-parity of $\Lambda_c(2880)^+$
- $\Lambda_c(2940)^+$: 5MeV below D*p threshold
 - Exotics? hep-ph/0606015
 - Conventional baryon? PRD75,094017; JPG34, 961; PRD75, 094017 (2007)
- $\Lambda_c(2765)$: should be studied in more depth.

$\Lambda_{\rm c}$ (2765) $\rightarrow \Lambda_{\rm c}^+ \pi^+ \pi^-$?

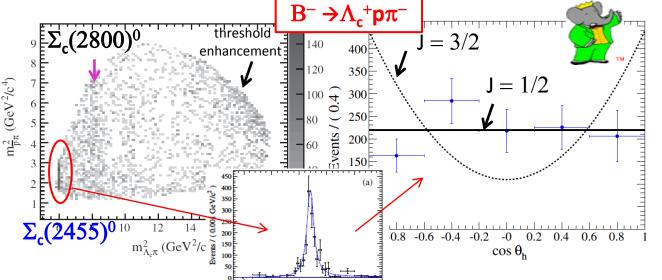


PRL 98, 262001 (2007): Belle

Spin-parity

PRL 98, 262001 (2007): Belle

$J^{P} [\Lambda_{c}(2880)^{+}]$


• J = 5/2 favored

•
$$R = \frac{\Gamma[\Sigma_c(2520)\pi]}{\Gamma[\Sigma_c(2455)\pi]}$$

 $R = 0.23 \pm 0.06 \pm 0.03$

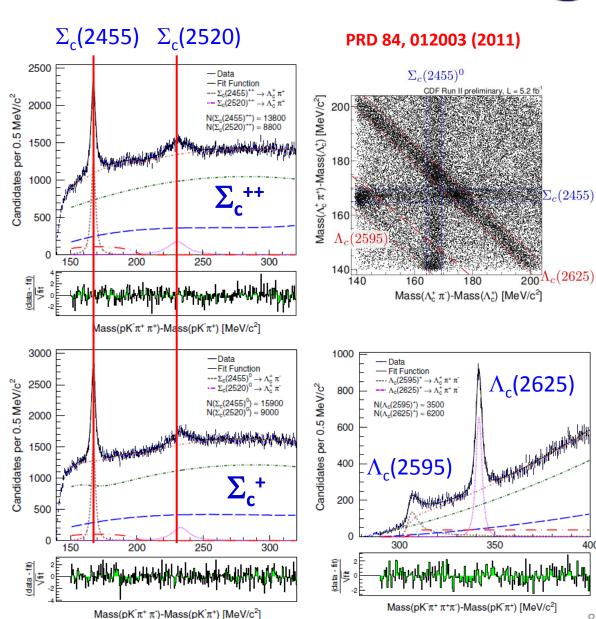
Heavy Quark Symmetry

- $R = 1.4:5/2^-$

- $R \sim 0.3:5/2$ +

 $m_{A,\pi}$ (GeV/c²)

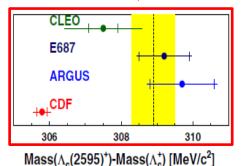
PRD 78, 112003 (2008): BaBar


 $J^{P} [\Sigma_{c}(2445)^{0}]$

• J = 1/2 favored

$\Sigma_{\rm c}(2455), \Sigma_{\rm c}(2520), \Lambda_{\rm c}(2595), \Lambda_{\rm c}(2625)$

- $\Lambda_c^+(J^p = 1/2^+)$
 - only weak decay
- $\Sigma_{\rm c}$ (2455) (J^p = 1/2⁺), $\Sigma_{\rm c}$ (2520) (J^p = 3/2⁺)
 - L=0 orbital excitations
 - Isospin triplets : 0, +, ++
 - Strong decay to $\Lambda_c \pi$
- Λ_c (2595) (J^p = 1/2⁻), Λ_c (2625) (J^p = 3/2⁻)
 - L=1 orbital excitations
 - Isospin singlets: +
 - Strong decay to Λ_c π π
 - $-\Lambda_{\rm c}$ (2595) S-wave res.
 - $-\Lambda_c$ (2625) D-wave res.
 - Non-res. P-wave


$\Sigma_{\rm c}(2455), \Sigma_{\rm c}(2520), \Lambda_{\rm c}(2595), \Lambda_{\rm c}(2625)$

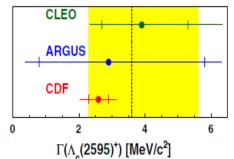
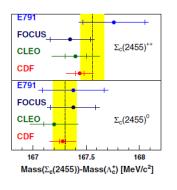
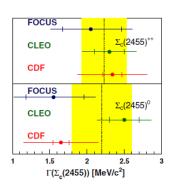
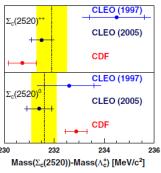
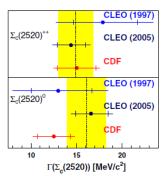


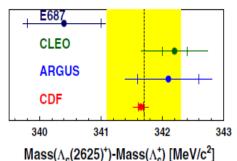
TABLE VIII. Measured resonance parameters, where the first uncertainty is statistical and the second is systematic.


Hadron	$\Delta M [{ m MeV}/c^2]$	$\Gamma\left[{ m MeV}/c^2 ight]$
$\Sigma_c(2455)^{++}$	$167.44 \pm 0.04 \pm 0.12$	$2.34 \pm 0.13 \pm 0.45$
$\Sigma_c(2455)^0$	$167.28 \pm 0.03 \pm 0.12$	$1.65 \pm 0.11 \pm 0.49$
$\Sigma_c(2520)^{++}$	$230.73 \pm 0.56 \pm 0.16$	$15.03 \pm 2.12 \pm 1.36$
$\Sigma_c(2520)^0$	$232.88 \pm 0.43 \pm 0.16$	$12.51 \pm 1.82 \pm 1.37$
$\Lambda_{c}(2595)^{+}$	$305.79 \pm 0.14 \pm 0.20$	$h_2^2 = 0.36 \pm 0.04 \pm 0.07$
$\Lambda_{c}(2625)^{+}$	$341.65 \pm 0.04 \pm 0.12$	

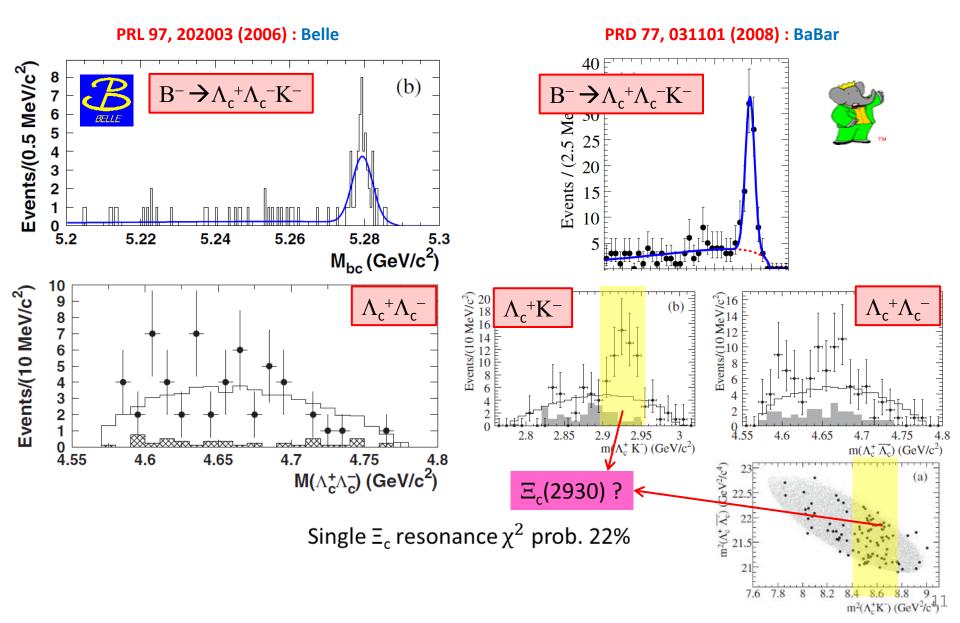

- Consistent with previous exp. results
- Considerable improvement in $\Lambda_c(2595)$, $\Lambda_c(2625)$
- Pion coupling constant (h₂) measured.
- Discrepancy in $\Lambda_c(2595)$ mass with previous results
 - Due to proper treatment of kinematical thresh. effect
 - Refer to PRD 67, 074033 (2003).

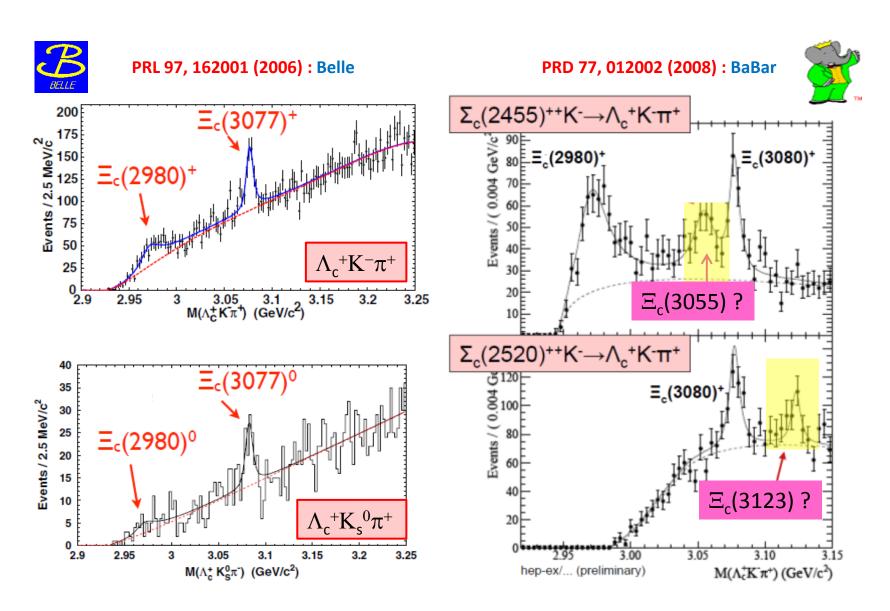




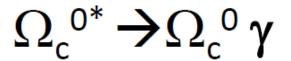

PRD 84, 012003 (2011)

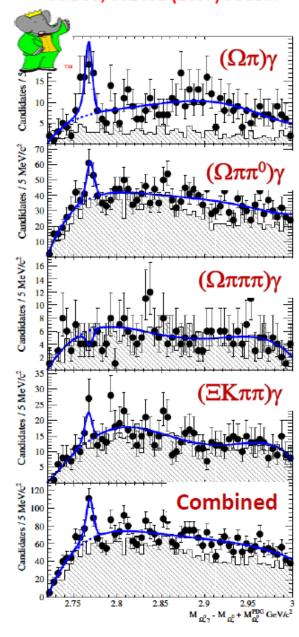
$\Xi_{\rm c}$ -excitation family

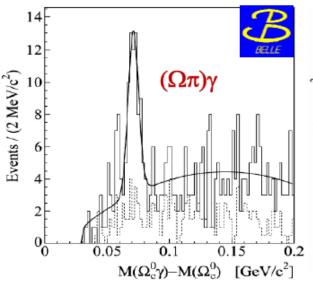


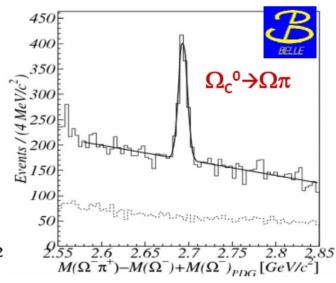

Ехр.	Mode	Mass (MeV/c ²)	MeV/c ²) Width (MeV)	
BABAR	$\Xi_c(2930)^0 \to \Lambda_c^+ K^-$	$2931 \pm 3 \pm 5$	$36\pm7\pm1$	
Belle	$\Xi_c(2980)^+ \to \Xi_c(2645)^0 \pi^+$	$2967.7 \pm 2.3 {}^{+1.1}_{-1.2}$	$18\pm 6\pm 3$	$S = 7.3\sigma$
Belle	$\Xi_c(2980)^+ \to \Lambda_c^+ K^- \pi^+$	$2978.5 \pm 2.1 \pm 2.0$	$43.5 \pm 7.5 \pm 7.0$	$S = 5.7\sigma$
BABAR	$\Xi_c(2980)^+ \to \Lambda_c^+ K^- \pi^+$	$2978.5 \pm 2.1 \pm 2.0$	$43.5 \pm 7.5 \pm 7.0$	$S > 9\sigma$
Belle	$\Xi_c(2980)^0 \to \Xi_c(2645)^+\pi^-$	$2965.7 \pm 2.4 {}^{+1.1}_{-1.2}$	$15\pm 6\pm 3$	$S = 6.1\sigma$
Belle	$\Xi_c(2980)^0 \to \Lambda_c^+ K_S \pi^-$	$2977.1 \pm 8.8 \pm 3.5$	43.5 (fixed)	$S = 1.5\sigma$
BABAR	$\Xi_c(2980)^0 \to \Lambda_c^+ K_S \pi^-$	$2972.9 \pm 4.4 \pm 1.6$	$31\pm7\pm8$	$S = 1.7\sigma$
BABAR	$\Xi_c(3055)^+ \to \Lambda_c^+ K^- \pi^+$	$3054.2 \pm 1.2 \pm 0.5$	$17\pm 6\pm 11$	$S = 6.4\sigma$
Belle	$\Xi_c(3077)^+ \to \Lambda_c^+ K^- \pi^+$	$3076.7 \pm 0.9 \pm 0.5$	$6.2 \pm 1.2 \pm 0.8$	$S = 9.2\sigma$
BABAR	$\Xi_c(3077)^+ \to \Lambda_c^+ K^- \pi^+$	$3077.0 \pm 0.4 \pm 0.2$	$5.5 \pm 1.3 \pm 0.6$	$S > 9\sigma$
Belle	$\Xi_c(3077)^0 \to \Lambda_c^+ K_S \pi^-$	$3082.8 \pm 1.8 \pm 1.5$	$5.2 \pm 3.1 \pm 1.8$	$S = 4.4\sigma$
BABAR	$\Xi_c(3077)^0 \to \Lambda_c^+ K_S \pi^-$	$3079.3 \pm 1.1 \pm 0.2$	$5.9 \pm 2.3 \pm 1.5$	$S = 4.5\sigma$
BABAR	$\Xi_c(3123)^+ \to \Lambda_c^+ K^- \pi^+$	$3122.9 \pm 1.3 \pm 0.3$	$4.4 \pm 3.4 \pm 1.7$	$S = 3.0\sigma$

- Good consistent between BaBar and Belle measurements.
- Isospin doublets : $\Xi_c(2980)$, $\Xi_c(3077)$
- $\Xi_c(2930)^+$, $\Xi_c(3055)^+$, $\Xi_c(3123)^+$: unpromoted states

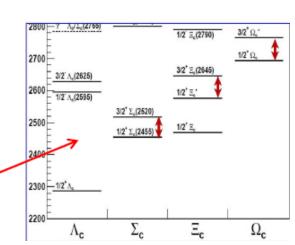

$\Xi_{\rm c}$ (2930) $\rightarrow \Lambda_{\rm c}^{+} {\rm K}^{-}$?


$\Xi_{\rm c}$ (3055,3132) $\to \Lambda_{\rm c}^{+} \, \overline{\rm K} \, \pi^{-}$?




PRL 97, 232001 (2006): BaBar PRL 99, 062001 (2007): BaBar

PLB 672, 1 (2009): Belle


 $M_{\Omega_c^0} = (2693.6 \pm 0.3 \text{(stat.)} ^{+1.8}_{-1.5} \text{(syst.)}) \text{ MeV/}c^2$ (Belle)

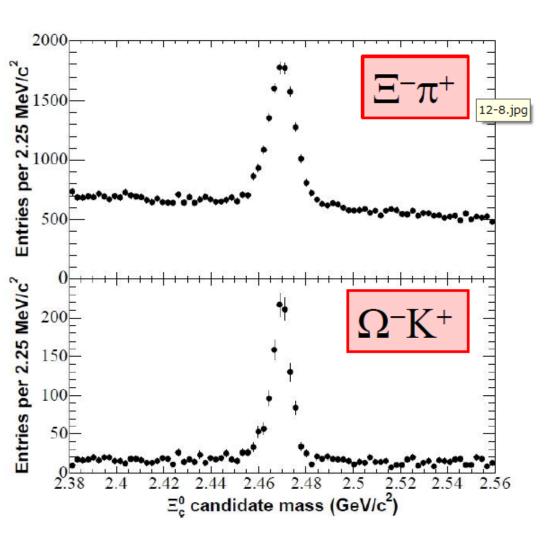
Mass splitting $\Delta M = m(\Omega_c^{*0}) - m(\Omega_c^{0})$:

BaBar: $\Delta M = 70.8 \pm 1.0 \pm 1.1 \text{ MeV}/c^2$

Belle: $\Delta M = 70.7 \pm 0.9^{+0.1}_{-0.9} \text{ MeV}/c^2$

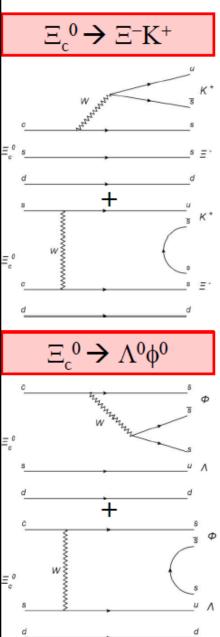
Consistent with naïve mass splitting approach

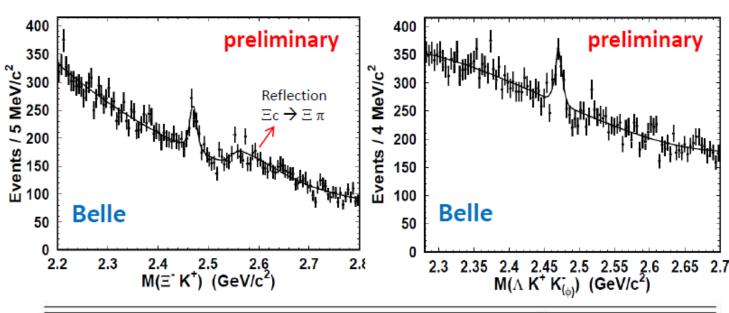
Weak decays


Updated results from Babar/Belle

Experiment	Baryon	Decay mode	Yield	Reference mode	$\mathcal{B}_{signal}/\mathcal{B}_{ref.}$
Belle		ΛK^+ (CS)	265 ± 25	$\Lambda \pi^+$	$0.074 \pm 0.010 \pm 0.012$
Belle		$\Sigma^0 K^+$ (CS)	75 ± 18	$\Sigma^0\pi^+$	$0.056 \pm 0.014 \pm 0.008$
BaBar		ΛK^+ (CS)	1162 ± 101	$\Lambda \pi^+$	$0.044 \pm 0.004 \pm 0.003$
BaBar		$\Sigma^0 K^+$ (CS)	366 ± 52	$\Sigma^0\pi^+$	$0.038 \pm 0.005 \pm 0.003$
BaBar		$\Lambda K^+\pi^+\pi^-$ (CS)	160 ± 62	$\Lambda \pi^+$	$<4.1 \times 10^{-2} 90\% \text{ CL}$
BaBar		$\Sigma^0 K^+ \pi^+ \pi^-$ (CS)	21 ± 24	$\Sigma^0\pi^+$	$<2.0 \times 10^{-2} 90\% \text{ CL}$
Belle		$\Sigma^+ K^+ \pi^-$ (CS)	105 ± 24	$\Sigma^{+}\pi^{+}\pi^{-}$	$0.047 \pm 0.011 \pm 0.008$
Belle		$\Sigma^+ K^+ K^-$ (WE)	246 ± 20	$\Sigma^{+}\pi^{+}\pi^{-}$	$0.076 \pm 0.007 \pm 0.009$
Belle	Λ_c^+	$\Sigma^+\phi$ (WE)	129 ± 17	$\Sigma^{+}\pi^{+}\pi^{-}$	$0.085 \pm 0.012 \pm 0.012$
Belle	n_c	$\Xi(1690)^0(\to \Sigma^+K^-)K^+ (\mathrm{WE})$	75 ± 16	$\Sigma^{+}\pi^{+}\pi^{-}$	$0.023 \pm 0.005 \pm 0.005$
Belle		$\Xi(1690)^0 (\to \Lambda \bar{K}^0) K^+ \text{ (WE)}$	93 ± 26	$\Lambda \bar{K}^0 K^+$	$0.26 \pm 0.08 \pm 0.03$
Belle		$\Sigma^+ K^+ K^-$ (non-res) (WE)	11 ± 16	$\Sigma^{+}\pi^{+}\pi^{-}$	< 0.018 @ 90% CL
Belle		pK^+K^- (CS)	676 ± 89	$pK^-\pi^+$	$0.014 \pm 0.002 \pm 0.002$
Belle		$p\phi$ (CS)	345 ± 43	$pK^-\pi^+$	$0.015 \pm 0.002 \pm 0.002$
Belle		pK^+K^- (non- ϕ)	344 ± 81	$pK^-\pi^+$	$0.007 \pm 0.002 \pm 0.002$
BaBar		$\Sigma^0 \pi^+$ (CF)	32693 ± 324	$\Lambda \pi^+$	$0.977 \pm 0.015 \pm 0.051$
BaBar		$\Xi^-K^+\pi^+$ (CF)	2665 ± 84	$\Lambda \pi^+$	$0.480 \pm 0.016 \pm 0.039$
BaBar		$\Lambda \bar{K}^0 K^+$ (CF)	460 ± 30	$\Lambda \pi^+$	$0.395 \pm 0.026 \pm 0.036$
Belle	Ξ_c^+	$\Lambda K^-\pi^+\pi^+$	117 ± 55	$\Xi^-\pi^+\pi^+$	$0.32 \pm 0.03 \pm 0.02$
Belle	Ξ_c	$pK_S^0K_S^0$	168 ± 27	$\Xi^-\pi^+\pi^+$	$0.087 \pm 0.016 \pm 0.014$
Belle		$pK^+K^+\pi^+$	1908 ± 62	$\Xi^-\pi^+$	$0.33 \pm 0.03 \pm 0.03$
Belle	Ξ_c^0	ΛK_S^0	465 ± 37	$\Xi^-\pi^+$	$0.21 \pm 0.02 \pm 0.02$
Belle	Ξ_c	$\Lambda K^-\pi^+$	3268 ± 276	$\Xi^-\pi^+$	$1.07 \pm 0.12 \pm 0.07$
BaBar		Ω^-K^+	≈ 650	$\Xi^-\pi^+$	$0.294 \pm 0.018 \pm 0.016$
BaBar		$\Omega^-\pi^+\pi^0$	64 ± 15	$\Omega^-\pi^+$	$1.27 \pm 0.31 \pm 0.11$
BaBar	Ω_c^0	$\Omega^-\pi^+\pi^+\pi^-$	25 ± 8	$\Omega^-\pi^+$	$0.28 \pm 0.09 \pm 0.01$
BaBar		$\Xi^-K^-\pi^+\pi^-$	45 ± 12	$\Omega^-\pi^+$	$0.46 \pm 0.13 \pm 0.03$

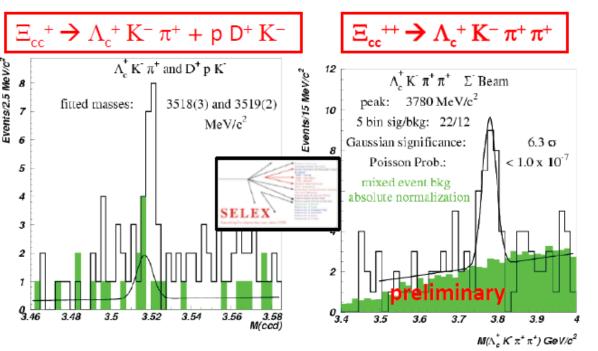
$\Xi_{c}^{0} \rightarrow \Omega^{-}K^{+}$




$$\frac{\mathcal{B}(\Xi_c^0 \to \Omega^- K^+)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} = 0.294 \pm 0.018 \pm 0.016$$

 Consistent with theoretical prediction: 0.32 (Korner & Kramer, 1992)

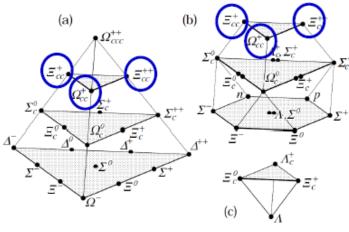
New Cabibbo-Suppressed Ξ_c^0 weak Decays





Mode	Yield	Efficiency (%)	$\frac{\mathcal{B}(\Xi_c^0 \to mode)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)} \left(\times 10^{-2} \right)$
$\Xi_c^0 \to \Xi^- K^+$	$\textbf{313.8} \pm \textbf{57.8}$	4.47 ± 0.03	$2.75 \pm 0.51 \pm 0.25$
$\Xi_c^0 \to \Lambda^0 \phi$	315.8 ± 53.7	3.60 ± 0.02	$3.43 \pm 0.58 \pm 0.32$
$\Xi_c^0 \to \Xi^- \pi^+$	15324 ± 262	6.00 ± 0.03	1

- First C.-S. mode observation in Ξ_c^0 weak decays.
- Used ~700/fb Y(4S) on-resonance data sample.
- $p^*>3.0$ GeV/c to remove combinatorial BG.


Doubly charmed baryons

PRL 97, 162001 (2006) : Belle PRD 74, 011103 (2006) : BaBar

{CCq}

- SELEX reported the observation of $\Xi_{\rm cc}^{\ \ +}$
 - measured m(Ξ_{cc}^+) = 3518.7 (1.8) MeV/c²
 - Theory: $m(\Xi_{cc}^{+}) = \sim 3610 \text{ MeV/c}^2$
 - τ (measured) < τ (theory)
- No confirmed by FOCUS/Belle/BaBar

Experiment	Limit on $R_{\Xi_{cc}^+/\Lambda_c^+}$	Kinematic cuts
BABAR	$6.9 \times 10^{-4} @ 95\% \text{ CL}$	_
BABAR	$2.7 \times 10^{-4} @ 95\% \text{ CL}$	$p^* > 2.3 \text{ GeV}/c$
Belle	$1.5 \times 10^{-4} @ 90\% CL$	$p^* > 2.5 \text{ GeV}/c$
FOCUS	2.3×10^{-3} @ 90% CL	

LHCb under MC study in active.

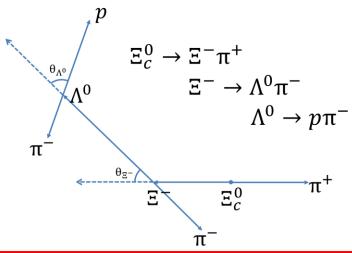
450	<u> </u>
400	,+ ,+ ,, ,++ ⁺ , <u>,+ +,+[†] ,+ ,++[†] ,+ ,+</u>
200 MeV/c ² 350 250 250	┊ _{╸╇╻╇╻╇} ╶╻ ╻ ┸ [┸] ╻╒╬╸╻╒ ╇ ╵╻ ╇ ╻ ╇ ╸ ╇╇
₹ 300	#
250	↑ ↑ 1
တ္ဆ 200	
Events / 200	
Ш 100	$\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$
50	BELLE CC 7 1-C 1-1
0 3.	.4 3.425 3.45 3.475 3.5 3.525 3.575 3.6 3.625 3.65 $M(\Lambda_c^+ K^{-+})$ (GeV/c ²)

Decay Asymmetry

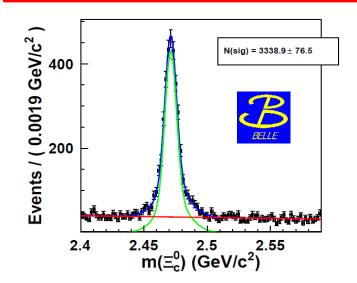
Decay asymmetry

Predicted asymmetry parameter (α)

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
,	Krämer [56]			et al. [74]	_	Verma [72]	
$\Lambda_c^+ \to \Lambda \pi^+$	-0.70	-0.67	-0.95	-0.95	-0.99	-0.99	-0.91 ± 0.15
$\Lambda_c^+ \to \Sigma^0 \pi^+$	0.70	0.92	0.78	0.43	0.39	-0.31	
$\Lambda_c^+ \to \Sigma^+ \pi^0$	0.71	0.92	0.78	0.43	0.39	-0.31	-0.45 ± 0.32
$\Lambda_c^+ o \Sigma^+ \eta$	0.33			0.55	0	-0.91	
$\Lambda_c^+ o \Sigma^+ \eta'$	-0.45			-0.05	-0.91	0.78	
$\Lambda_c^+ \to p \bar{K}^0$	-1.0	0.51	-0.49	-0.97	-0.66	-0.99	
$\Lambda_c^+ \to \Xi^0 K^+$	0	0		0	0	0	
$\Xi_c^+ \to \Sigma^+ \bar{K}^0$	-1.0	0.24	-0.09	-0.99	1.00	0.54	
$\Xi_c^+ \to \Xi^0 \pi^+$	-0.78	-0.81	-0.77	-1.0	1.00	-0.27	
$\Xi_c^0 \to \Lambda \bar{K}^0$	-0.76	1.0	-0.73	-0.75	-0.29	-0.79	
$\Xi_c^0 o \Sigma^0 ar K^0$	-0.96	-0.99	-0.59	-0.55	-0.50	0.48	
$\Xi_c^0 \to \Sigma^+ K^+$	0	0		0	0	0	
$\Xi_c^0 o \Xi^0 \pi^0$	0.92	0.92	-0.54	0.94	0.21	-0.80	
$\Xi_c^0 o \Xi^0 \eta$	-0.92			-1.0	-0.04	0.21	
$\Xi_c^0 o \Xi^0 \eta'$	-0.38			-0.32	-1.00	0.80	
$\Xi_c^0 \to \Xi^- \pi^+$	-0.38	-0.38	-0.99	-0.84	-0.79	-0.97	-0.6 ± 0.4
$\Omega_c^0 \to \Xi^0 \bar{K}^0$	0.51		-0.93	-0.81			
	1						


- Parity violation occurs in charm baryon decays due to existence of two orbital angular mom. decay amplitudes of opposite parity.
- The experimental observable is an asymmetry in the angular decay distribution due to interference between the two amplitudes.
- Many theoretical predictions have been made so that one can rule out some of them by measuring α .
- However, just few measurements available with large error so far.

Rather recent measurement(2006) by FOCUS:


$$\alpha_{\Lambda_c^+} = -0.78 \pm 0.16 \pm 0.19 (\Lambda_c^+ \to \Lambda^0 \pi^+)$$

Under detail study @ Belle

$\Xi_c^0 \rightarrow \Xi^- \pi^+$ decay asymmetry

$$\frac{dN}{d\cos\theta_{\Xi^{-}}} \propto 1 + \alpha_{\Xi_{c}^{0}} \alpha_{\Xi^{-}} \cos\theta_{\Xi^{-}}$$

- Detail study with MC & control sample
 - N(sig) ~ 3K (off-resonance: 79/fb)
 - Cut optimization
 - $-\alpha$ extraction procedure
- Expect ~30K signals (on-resonance data)
- Perform 2-D fit $(M(\Xi_c^0) \& cos\theta_{\Xi^-})$

$$- P_j^i = P_j(m(\Xi_c^0))^i \times P_j(\cos\theta_{\Xi^-})^i$$

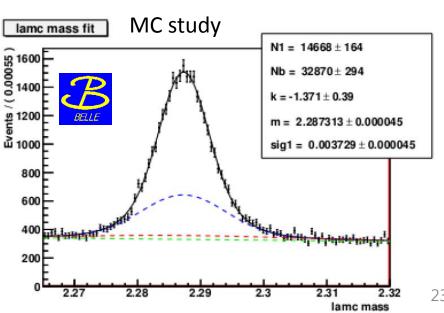
$$- P_{sig}(cos\theta_{\Xi^{-}})^{i} = f(\varepsilon_{\Xi^{-}})^{i} \times f(\alpha_{\Xi_{c}^{0}}\alpha_{\Xi^{-}})^{i}$$

- $-f(\varepsilon_{\Xi^{-}})$: efficiency correction
- $-f(\alpha_{\Xi_c^0}\alpha_{\Xi^-})$: our target
- Under systematic study
- Expected sensitivity:
 - $-\delta \alpha \sim 3\%$ (stat.) (cf. CLEO : 0.6 ± 0.4)
- Extend to CPV measurement

CPV search

- CPV in baryonic decays has never been measured so far.
- Expected A_{CP} in the Standard Model is quite small.

$$A_{\rm CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} < \mathcal{O}(10^{-4})$$


Only FOCUS and CLEO made in charmed baryon decays.

	A_{CP}	Mode	Exp.
PLB 634, 165 (2000)	-0.07 ± 0.31	$\Lambda_c^+ \to \Lambda^0 \pi^+$	FOCUS
PRL 94, 191801 (1994)	0.00 ± 0.04	$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	CLEO

Better stat. & syst. sensitivities can be achieved in Belle.

CPV search at Belle

- Search mode : $\Lambda_c^+ \to \Lambda \pi^+$
- Basic strategy is blind analysis with MC sample at initial stage.
 - Kinematic reconstruction
 - Cut optimization
- Procedure of A_{CP} measurement is well established.
 - Measure signal yields in $\cos \theta_{\Lambda}$ bins.
 - Extract A_{CP} from measured α and α -bar
- Expected sensitivity
 - $-\delta\alpha = \sim 0.5\%$ (stat.)
 - $-\delta A_{CP} = \sim 7\%$ (stat.)

Summary

- Most of recent contributions done by BaBar and Belle.
- Good shape in measurement of strong/EM decays.
 - Need confirmation of unpromoted states.
- Still poor stage in measurement of weak decays.
 - Hope to see doubly charmed baryons in a few years.
 - Under study of decay asymmetry and CPV.
 - − Need absolute BF measurements, model-indep. BF($\Lambda_c \rightarrow pK\pi$).
- Waiting for remarkable results from running/upcoming exp.

감사합니다! Thank you