Technology Comparison: brief update

- People contributing: Ciaran, Cosmin, Kentaro, S.V.
- Running a bit late... (Spent most of my time writing code, instead of text for paper.)
- Simulation framework mostly completed now
 - Recoil generator: SRIM
 - Electron generator: CASINO
 - Detector + readout simulation: own code in python
- First results for neutrino/WIMP discrimination with 1D readout shown at CYGNUS2017 (see slides attached to this agenda).
- Today, focusing on
 - Cosmic visions white paper
 - Electron discrimination at low recoil energy. This is a key issues we need address for coming funding proposals and in our paper.

CYGNUS HD10: Sensitivity for Cosmic Visions

(estimated by Nguven Phan)

10 m³ w/ 3-years of running. Competitive sensitivity. Could be a step towards a large CYGNUS observatory.

New Results (post CYGNUS2017): Electron discrimination in 20 torr of SF₆

• L versus E: definition of L is important

New Results (post CYGNUS2017): Electron discrimination in 20 torr of SF₆

• L versus E: definition of L is important

With diffusion included. 0-50 cm driftlength.

Upshot: Quite good electron rejection ($>\sim 10^3$) looks feasible above 20 keV (in 3D) Still need to properly quantify, but for reference, there are 500 electrons in each energy bin

Discrimination at low E < 20 keVee: 10 GeV WIMPs

• w/o diffusion

• With diffusion

Below 5 keV, electron discrimination improves again! Particularly for He recoils! Limited by diffusion. Next steps: validate w/ DEGRAD, include effect of charge readout and post-detection track reconstruction.

Outlook

- Most hard work done now, but still need significant time to analyze results and write text.
- Planning two types of crosschecks of existing simulations
 - Simulate nuclear recoils both with
 - 1D SRIM dE/dX (done) and
 - Cosmin's 3D recoil library (have a first version, not tested yet)
 - Simulate electrons both with
 - CASINO (done)
 - DEGRAD (CERN packge). Have a summer student will do this in July.
- We all need to agree on gas mixtures presented in different parts of the CYGNUS paper. Proposal:
 - 600 torr He + 200 torr SF6 [CYGNUS HD-10 mixture]
 - 60 torr He + 20 torr SF6 [candidate for large directional CYGNUS]
- I can't promise that I will do any useful work in July. I will be back and free to resume work July 28th.
- Can we finish the draft by mid August, and submit to Journal by August 31? Ambitous, but possible?

Input parameters used to simulate ionization, drift, gas gain

Disclaimer: highly preliminary

-- needs more work!

- Gas mixture: SF₆
- Pressure: 20 torr
- W: 35.45 eV per ion pair [Hilal and Christophorou, alpha particles]
- Gas gain: 9000 (A. Scarf)
- Gain resolution: $\frac{\sigma_G}{c} = 20\%$ (A. Scarf, Sheffield)
- Diffusion: 116.2 $\frac{\mu m}{\sqrt{cm}}$ Drift velocity: 140 μ m/ μ s

[from D. Loomba, New Mexico: for 600-800 V/cm which gave minimum diffusion at 20 Torr]

Input parameters for readout plane simulation

Disclaimer: *highly* preliminary

-- needs more work!

Readout type	Dimensionality	Segmentation	Z binning (assume 1MHz sampling)	Detector Element Capacitance	Noise level	Noise level per 1-µs readout clock cycle	Threshold (avalanche charge)
planar	1D (z)	10 cm x 10 cm	140 μm	11,000 pF GEMs: 250pF (3cm*3cm, 100um) 3000pF (10cm*10cm, 100um) 25000pF (30cm*30cm, 100um)	5400 e ⁻ for 1000 pF, 1μs peaking time	18000 e ⁻	3 x noise
wires	2D (xz)	1m wires, 2mm pitch	140 μm	?	250e ⁻ in 10 us	800 e ⁻	3 x noise
CMOS camera	2D (xy)	t.b.d.	n/a	n/a	?	?	?
resistive strip Micromegas	3D (xyz) with coincidence ambiguity	1 m strips, 200 μm pitch	140 μm	50 pF per 10 cm of strip → 500 pF	2800e ⁻ for 1μs peaking time	2800 e ⁻	3 x noise
pixel ASIC	3D (xyz)	200 μm	140 μm	12-200 fF	~270 e ⁻ (per 25 ns sample)	42 e⁻	1500 e ⁻

(only charge readout for now. But can probably add 2d optical.)

New: Particle ID

Michael Hedges
TPC Simulation by Igal Jaegle (now at U. Florida)

dE/dZ vs dE/dS

One 10-keV electron

dE/dZ vs dE/dS

Another 10-keV electron

